准二维有机-无机杂化钙钛矿反铁电-反铁磁性极性转子设计

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Zi-Ao Qiu, Hua-Kai Li, Ze-Jiang Xu, Liang-Han Shen, Xiang Zhang, Chao Shi, Na Wang, Xiaobin Fu, Nian-Tao Yao, Heng-Yun Ye, Le-Ping Miao
{"title":"准二维有机-无机杂化钙钛矿反铁电-反铁磁性极性转子设计","authors":"Zi-Ao Qiu, Hua-Kai Li, Ze-Jiang Xu, Liang-Han Shen, Xiang Zhang, Chao Shi, Na Wang, Xiaobin Fu, Nian-Tao Yao, Heng-Yun Ye, Le-Ping Miao","doi":"10.1039/d5qi01473e","DOIUrl":null,"url":null,"abstract":"Antiferroelectric-antiferromagnetic (AFE-AFM) multiferroic materials have received extensive attention due to their applications in high-energy storage devices. However, achieving AFE-AFM properties in a hybrid molecular material has greater challenges because electric dipole orders and magnetic dipole orders are often mutually exclusive. Here, we report a molecular strategy that utilizes polar rotors combined with magnetic modules to overcome the above exclusion in a Quasi-two-dimensional (Q-2D) hybrid perovskite platform. Based on the non-ferroic [CBA]2CoCl4 (CBA = cyclobutylaminium, CBC), F-substituted [DFCBA]2CoCl4 (DFCBA = 3,3-difluorocyclobutylamine, DFCBC) with polar rotors shows AFE-AFM properties. Systematic experimental results reveal that the rotor movement freezing forms antiparallel arranged dipole arrays, which is the origin of the AFE feature. Moreover, DFCBC exhibits antiferromagnetism from the inorganic [CoCl4]2– component, reaching 1.73 Nβ at 50 kOe. Our study presents the advantages of the Ruddlesden-Popper (RP) hybrid perovskite molecular rotor platform for realizing AFE-AFM properties. It gives insight into the molecular design for controlling the macroscopic physical properties.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"28 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polar Rotor for Designing Antiferroelectricity-Antiferromagnetism in a Quasi-2D Organic-Inorganic Hybrid Perovskite\",\"authors\":\"Zi-Ao Qiu, Hua-Kai Li, Ze-Jiang Xu, Liang-Han Shen, Xiang Zhang, Chao Shi, Na Wang, Xiaobin Fu, Nian-Tao Yao, Heng-Yun Ye, Le-Ping Miao\",\"doi\":\"10.1039/d5qi01473e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antiferroelectric-antiferromagnetic (AFE-AFM) multiferroic materials have received extensive attention due to their applications in high-energy storage devices. However, achieving AFE-AFM properties in a hybrid molecular material has greater challenges because electric dipole orders and magnetic dipole orders are often mutually exclusive. Here, we report a molecular strategy that utilizes polar rotors combined with magnetic modules to overcome the above exclusion in a Quasi-two-dimensional (Q-2D) hybrid perovskite platform. Based on the non-ferroic [CBA]2CoCl4 (CBA = cyclobutylaminium, CBC), F-substituted [DFCBA]2CoCl4 (DFCBA = 3,3-difluorocyclobutylamine, DFCBC) with polar rotors shows AFE-AFM properties. Systematic experimental results reveal that the rotor movement freezing forms antiparallel arranged dipole arrays, which is the origin of the AFE feature. Moreover, DFCBC exhibits antiferromagnetism from the inorganic [CoCl4]2– component, reaching 1.73 Nβ at 50 kOe. Our study presents the advantages of the Ruddlesden-Popper (RP) hybrid perovskite molecular rotor platform for realizing AFE-AFM properties. It gives insight into the molecular design for controlling the macroscopic physical properties.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5qi01473e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi01473e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

反铁电-反铁磁(AFE-AFM)多铁性材料因其在高能存储器件中的应用而受到广泛关注。然而,在杂化分子材料中实现AFE-AFM特性具有更大的挑战,因为电偶极子顺序和磁偶极子顺序通常是相互排斥的。在这里,我们报告了一种分子策略,利用极性转子结合磁性模块来克服准二维(Q-2D)混合钙钛矿平台中的上述排斥。以非铁氧体[CBA]2CoCl4 (CBA =环丁基胺,CBC)为基础,用极性转子取代[DFCBA]2CoCl4 (DFCBA = 3,3-二氟环丁基胺,DFCBC),表现出afm - afm性质。系统的实验结果表明,转子运动冻结形成了反平行排列的偶极子阵列,这是AFE特征的起源。此外,DFCBC的无机组分[CoCl4]2 -表现出反铁磁性,在50 kOe时达到1.73 Nβ。我们的研究展示了Ruddlesden-Popper (RP)杂化钙钛矿分子转子平台实现AFE-AFM性能的优势。它为控制宏观物理性质的分子设计提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polar Rotor for Designing Antiferroelectricity-Antiferromagnetism in a Quasi-2D Organic-Inorganic Hybrid Perovskite
Antiferroelectric-antiferromagnetic (AFE-AFM) multiferroic materials have received extensive attention due to their applications in high-energy storage devices. However, achieving AFE-AFM properties in a hybrid molecular material has greater challenges because electric dipole orders and magnetic dipole orders are often mutually exclusive. Here, we report a molecular strategy that utilizes polar rotors combined with magnetic modules to overcome the above exclusion in a Quasi-two-dimensional (Q-2D) hybrid perovskite platform. Based on the non-ferroic [CBA]2CoCl4 (CBA = cyclobutylaminium, CBC), F-substituted [DFCBA]2CoCl4 (DFCBA = 3,3-difluorocyclobutylamine, DFCBC) with polar rotors shows AFE-AFM properties. Systematic experimental results reveal that the rotor movement freezing forms antiparallel arranged dipole arrays, which is the origin of the AFE feature. Moreover, DFCBC exhibits antiferromagnetism from the inorganic [CoCl4]2– component, reaching 1.73 Nβ at 50 kOe. Our study presents the advantages of the Ruddlesden-Popper (RP) hybrid perovskite molecular rotor platform for realizing AFE-AFM properties. It gives insight into the molecular design for controlling the macroscopic physical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信