在群体感应调节下,种间电子转移是产甲烷群落演替的关键驱动因素之一。

IF 6.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-09-19 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf165
Shunan Zhao, Fangzhou Wang, Liuying Song, Shaoqing Zhu, Suo Liu, Kai Zhao, Ruiping Liu, Yu-You Li
{"title":"在群体感应调节下,种间电子转移是产甲烷群落演替的关键驱动因素之一。","authors":"Shunan Zhao, Fangzhou Wang, Liuying Song, Shaoqing Zhu, Suo Liu, Kai Zhao, Ruiping Liu, Yu-You Li","doi":"10.1093/ismeco/ycaf165","DOIUrl":null,"url":null,"abstract":"<p><p>Robust interspecies interactions are essential for efficient methanogenesis in anaerobic digestion. This study investigated the impact of quorum sensing (QS) enhancement on the succession of methanogenic communities during anaerobic digestion. The QS stimulation via exogenous N-acyl-homoserine lactones enhanced methane production by 18.8%-22.1%. Moreover, QS shaped microbial community succession toward a more deterministic assembly, selectively enriching key syntrophs (<i>Pelotomaculum</i>, <i>Smithella</i>), and methanogens (<i>Methanobacterium</i>, <i>Methanothrix</i>). Metagenomic analysis revealed that QS induced genes related to transcription, transport, and cofactor biosynthesis instead of directly regulating carbon metabolism. In this context, interspecies electron transfer emerges as a critical factor regulating interspecies interactions under QS regulation. Specifically, QS enhancement boosted redox mediator secretion, and the concentration of 2-amino-3-carboxy-1,4-naphthoquinone and phenazine increased by 7.8- and 4.8-fold, respectively. QS enhancement also induced higher abundance of c-type cytochromes. Moreover, the higher electron transfer coefficients were detected with 40.2%-89.9% increase. Further, QS also enhanced relative abundance of genes involved in Complex I/III and ferredoxin-dependent hydrogenases, promoting electron flow from syntrophs to methanogens. These effects induced higher relative abundance of genes associated with syntrophic propionate/butyrate oxidation and hydrogenotrophic/acetotrophic methanogenesis. Collectively, given that the similar regulation pathway is widely distributed in anaerobes, these findings identify QS as a critical ecological signal that drives functional microbial succession.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf165"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503159/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interspecies electron transfer as one of key drivers of methanogenic consortia succession within quorum sensing regulation.\",\"authors\":\"Shunan Zhao, Fangzhou Wang, Liuying Song, Shaoqing Zhu, Suo Liu, Kai Zhao, Ruiping Liu, Yu-You Li\",\"doi\":\"10.1093/ismeco/ycaf165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robust interspecies interactions are essential for efficient methanogenesis in anaerobic digestion. This study investigated the impact of quorum sensing (QS) enhancement on the succession of methanogenic communities during anaerobic digestion. The QS stimulation via exogenous N-acyl-homoserine lactones enhanced methane production by 18.8%-22.1%. Moreover, QS shaped microbial community succession toward a more deterministic assembly, selectively enriching key syntrophs (<i>Pelotomaculum</i>, <i>Smithella</i>), and methanogens (<i>Methanobacterium</i>, <i>Methanothrix</i>). Metagenomic analysis revealed that QS induced genes related to transcription, transport, and cofactor biosynthesis instead of directly regulating carbon metabolism. In this context, interspecies electron transfer emerges as a critical factor regulating interspecies interactions under QS regulation. Specifically, QS enhancement boosted redox mediator secretion, and the concentration of 2-amino-3-carboxy-1,4-naphthoquinone and phenazine increased by 7.8- and 4.8-fold, respectively. QS enhancement also induced higher abundance of c-type cytochromes. Moreover, the higher electron transfer coefficients were detected with 40.2%-89.9% increase. Further, QS also enhanced relative abundance of genes involved in Complex I/III and ferredoxin-dependent hydrogenases, promoting electron flow from syntrophs to methanogens. These effects induced higher relative abundance of genes associated with syntrophic propionate/butyrate oxidation and hydrogenotrophic/acetotrophic methanogenesis. Collectively, given that the similar regulation pathway is widely distributed in anaerobes, these findings identify QS as a critical ecological signal that drives functional microbial succession.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"5 1\",\"pages\":\"ycaf165\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503159/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycaf165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在厌氧消化中,强有力的种间相互作用是有效产甲烷的必要条件。本研究探讨了群体感应(quorum sensing, QS)增强对厌氧消化过程中产甲烷群落演替的影响。外源n -酰基-同丝氨酸内酯刺激QS可使甲烷产量提高18.8% ~ 22.1%。此外,QS将微生物群落演替向更确定的组合方向发展,选择性地丰富关键共生菌(Pelotomaculum, Smithella)和产甲烷菌(Methanobacterium, Methanothrix)。宏基因组分析表明,QS诱导的基因与转录、转运和辅因子生物合成相关,而不是直接调节碳代谢。在此背景下,种间电子转移成为QS调控下调节种间相互作用的关键因素。其中,QS增强促进了氧化还原介质的分泌,2-氨基-3-羧基-1,4-萘醌和吩那嗪的浓度分别增加了7.8倍和4.8倍。QS增强也导致c型细胞色素丰度增加。电子传递系数提高了40.2% ~ 89.9%。此外,QS还提高了复合物I/III和铁氧化还蛋白依赖的氢化酶相关基因的相对丰度,促进了电子从合养生物向产甲烷菌的流动。这些效应导致与合营养丙酸/丁酸氧化和氢营养/乙营养甲烷生成相关的基因相对丰度较高。综上所述,考虑到类似的调控途径在厌氧菌中广泛分布,这些发现表明QS是驱动功能性微生物演替的关键生态信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interspecies electron transfer as one of key drivers of methanogenic consortia succession within quorum sensing regulation.

Robust interspecies interactions are essential for efficient methanogenesis in anaerobic digestion. This study investigated the impact of quorum sensing (QS) enhancement on the succession of methanogenic communities during anaerobic digestion. The QS stimulation via exogenous N-acyl-homoserine lactones enhanced methane production by 18.8%-22.1%. Moreover, QS shaped microbial community succession toward a more deterministic assembly, selectively enriching key syntrophs (Pelotomaculum, Smithella), and methanogens (Methanobacterium, Methanothrix). Metagenomic analysis revealed that QS induced genes related to transcription, transport, and cofactor biosynthesis instead of directly regulating carbon metabolism. In this context, interspecies electron transfer emerges as a critical factor regulating interspecies interactions under QS regulation. Specifically, QS enhancement boosted redox mediator secretion, and the concentration of 2-amino-3-carboxy-1,4-naphthoquinone and phenazine increased by 7.8- and 4.8-fold, respectively. QS enhancement also induced higher abundance of c-type cytochromes. Moreover, the higher electron transfer coefficients were detected with 40.2%-89.9% increase. Further, QS also enhanced relative abundance of genes involved in Complex I/III and ferredoxin-dependent hydrogenases, promoting electron flow from syntrophs to methanogens. These effects induced higher relative abundance of genes associated with syntrophic propionate/butyrate oxidation and hydrogenotrophic/acetotrophic methanogenesis. Collectively, given that the similar regulation pathway is widely distributed in anaerobes, these findings identify QS as a critical ecological signal that drives functional microbial succession.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信