基于人工智能的肾脏功能自动评估方法,使用普通计算机断层扫描(CT)扫描每个肾脏。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Rongchang Guo, Wei Xia, Feng Xu, Yaotian Qian, Qiuyue Han, Daoying Geng, Xin Gao, Yiwei Wang
{"title":"基于人工智能的肾脏功能自动评估方法,使用普通计算机断层扫描(CT)扫描每个肾脏。","authors":"Rongchang Guo, Wei Xia, Feng Xu, Yaotian Qian, Qiuyue Han, Daoying Geng, Xin Gao, Yiwei Wang","doi":"10.1007/s13246-025-01651-w","DOIUrl":null,"url":null,"abstract":"<p><p>Separate renal function assessment is important in clinical decision making. The single-photon emission computed tomography is commonly used for the assessment although radioactive, tedious and of high cost. This study aimed to automatically assess the separate renal function using plain CT images and artificial intelligence methods, including deep learning-based automatic segmentation and radiomics modeling. We performed a retrospective study on 281 patients with nephrarctia or hydronephrosis from two centers (Training set: 159 patients from Center I; Test set: 122 patients from Center II). The renal parenchyma and hydronephrosis regions in plain CT images were automatically segmented using deep learning-based U-Net transformers (UNETR). Radiomic features were extracted from the two regions and used to build radiomic signature using the ElasticNet, then further combined with clinical characteristics using multivariable logistic regression to obtain an integrated model. The automatic segmentation was evaluated using the dice similarity coefficient (DSC). The mean DSC of automatic kidney segmentation based on UNETR was 0.894 and 0.881 in the training and test sets. The average time of automatic and manual segmentation was 3.4 s/case and 1477.9 s/case. The AUC of radiomic signature was 0.778 in the training set and 0.801 in the test set. The AUC of the integrated model was 0.792 and 0.825 in the training and test sets. It is feasible to assess the renal function of each kidney separately using plain CT and AI methods. Our method can minimize the radiation risk, improve the diagnostic efficiency and reduce the costs.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based method for renal function automatic assessment of each kidney using plain computed tomography (CT) scans.\",\"authors\":\"Rongchang Guo, Wei Xia, Feng Xu, Yaotian Qian, Qiuyue Han, Daoying Geng, Xin Gao, Yiwei Wang\",\"doi\":\"10.1007/s13246-025-01651-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Separate renal function assessment is important in clinical decision making. The single-photon emission computed tomography is commonly used for the assessment although radioactive, tedious and of high cost. This study aimed to automatically assess the separate renal function using plain CT images and artificial intelligence methods, including deep learning-based automatic segmentation and radiomics modeling. We performed a retrospective study on 281 patients with nephrarctia or hydronephrosis from two centers (Training set: 159 patients from Center I; Test set: 122 patients from Center II). The renal parenchyma and hydronephrosis regions in plain CT images were automatically segmented using deep learning-based U-Net transformers (UNETR). Radiomic features were extracted from the two regions and used to build radiomic signature using the ElasticNet, then further combined with clinical characteristics using multivariable logistic regression to obtain an integrated model. The automatic segmentation was evaluated using the dice similarity coefficient (DSC). The mean DSC of automatic kidney segmentation based on UNETR was 0.894 and 0.881 in the training and test sets. The average time of automatic and manual segmentation was 3.4 s/case and 1477.9 s/case. The AUC of radiomic signature was 0.778 in the training set and 0.801 in the test set. The AUC of the integrated model was 0.792 and 0.825 in the training and test sets. It is feasible to assess the renal function of each kidney separately using plain CT and AI methods. Our method can minimize the radiation risk, improve the diagnostic efficiency and reduce the costs.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01651-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01651-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

单独的肾功能评估在临床决策中很重要。单光子发射计算机断层扫描是目前常用的评估方法,但具有放射性,操作繁琐,成本高。本研究旨在利用CT平片和人工智能方法,包括基于深度学习的自动分割和放射组学建模,对分离的肾功能进行自动评估。我们对来自两个中心的281例肾衰竭或肾积水患者进行了回顾性研究(训练组:来自中心I的159例患者;测试组:来自中心II的122例患者)。采用基于深度学习的U-Net变压器(UNETR)对CT平扫图像中的肾实质和肾积水区域进行自动分割。提取两个区域的放射组学特征,利用ElasticNet构建放射组学特征,再结合临床特征,利用多变量logistic回归得到综合模型。采用骰子相似系数(DSC)对自动分割进行评价。在训练集和测试集上,基于UNETR的自动肾分割的平均DSC分别为0.894和0.881。自动和手动分割的平均时间分别为3.4 s/case和1477.9 s/case。训练集的辐射特征AUC为0.778,测试集的AUC为0.801。在训练集和测试集上,综合模型的AUC分别为0.792和0.825。采用CT平扫和人工智能分别评估各肾的肾功能是可行的。该方法可以最大限度地降低辐射风险,提高诊断效率,降低成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-based method for renal function automatic assessment of each kidney using plain computed tomography (CT) scans.

Separate renal function assessment is important in clinical decision making. The single-photon emission computed tomography is commonly used for the assessment although radioactive, tedious and of high cost. This study aimed to automatically assess the separate renal function using plain CT images and artificial intelligence methods, including deep learning-based automatic segmentation and radiomics modeling. We performed a retrospective study on 281 patients with nephrarctia or hydronephrosis from two centers (Training set: 159 patients from Center I; Test set: 122 patients from Center II). The renal parenchyma and hydronephrosis regions in plain CT images were automatically segmented using deep learning-based U-Net transformers (UNETR). Radiomic features were extracted from the two regions and used to build radiomic signature using the ElasticNet, then further combined with clinical characteristics using multivariable logistic regression to obtain an integrated model. The automatic segmentation was evaluated using the dice similarity coefficient (DSC). The mean DSC of automatic kidney segmentation based on UNETR was 0.894 and 0.881 in the training and test sets. The average time of automatic and manual segmentation was 3.4 s/case and 1477.9 s/case. The AUC of radiomic signature was 0.778 in the training set and 0.801 in the test set. The AUC of the integrated model was 0.792 and 0.825 in the training and test sets. It is feasible to assess the renal function of each kidney separately using plain CT and AI methods. Our method can minimize the radiation risk, improve the diagnostic efficiency and reduce the costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信