协议诱导的Dicke状态转换的动态代数。

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Pierre-Antoine Bernard, Luc Vinet
{"title":"协议诱导的Dicke状态转换的动态代数。","authors":"Pierre-Antoine Bernard, Luc Vinet","doi":"10.1098/rsta.2024.0415","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum [Formula: see text]-qubit states that are totally symmetric under the permutation of qubits are essential ingredients of important algorithms and applications in quantum information. Consequently, there is significant interest in developing methods to prepare and manipulate Dicke states, which form a basis for the subspace of fully symmetric states. Two simple protocols for transforming Dicke states are considered. An algebraic characterization of the operations that these protocols induce is obtained in terms of the Weyl algebra [Formula: see text] and [Formula: see text]. Fixed points under the application of the combination of both protocols are explicitly determined. Connections with the binary Hamming scheme, the Hadamard transform and Krawtchouk polynomials are highlighted.This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2306","pages":"20240415"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamical algebra of protocol-induced transformations on Dicke states.\",\"authors\":\"Pierre-Antoine Bernard, Luc Vinet\",\"doi\":\"10.1098/rsta.2024.0415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum [Formula: see text]-qubit states that are totally symmetric under the permutation of qubits are essential ingredients of important algorithms and applications in quantum information. Consequently, there is significant interest in developing methods to prepare and manipulate Dicke states, which form a basis for the subspace of fully symmetric states. Two simple protocols for transforming Dicke states are considered. An algebraic characterization of the operations that these protocols induce is obtained in terms of the Weyl algebra [Formula: see text] and [Formula: see text]. Fixed points under the application of the combination of both protocols are explicitly determined. Connections with the binary Hamming scheme, the Hadamard transform and Krawtchouk polynomials are highlighted.This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2306\",\"pages\":\"20240415\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0415\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0415","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

量子[公式:见文本]-在量子比特排列下完全对称的量子比特状态是量子信息中重要算法和应用的重要组成部分。因此,人们对开发制备和操纵Dicke态的方法非常感兴趣,Dicke态构成了完全对称态子空间的基础。考虑了用于转换Dicke状态的两个简单协议。用Weyl代数[公式:见文]和[公式:见文]获得了这些协议所引起的操作的代数表征。明确确定了两种协议组合应用下的固定点。强调了与二进制汉明格式、Hadamard变换和克劳楚克多项式的联系。本文是专题“数值分析、谱图理论、正交多项式和量子算法”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamical algebra of protocol-induced transformations on Dicke states.

Quantum [Formula: see text]-qubit states that are totally symmetric under the permutation of qubits are essential ingredients of important algorithms and applications in quantum information. Consequently, there is significant interest in developing methods to prepare and manipulate Dicke states, which form a basis for the subspace of fully symmetric states. Two simple protocols for transforming Dicke states are considered. An algebraic characterization of the operations that these protocols induce is obtained in terms of the Weyl algebra [Formula: see text] and [Formula: see text]. Fixed points under the application of the combination of both protocols are explicitly determined. Connections with the binary Hamming scheme, the Hadamard transform and Krawtchouk polynomials are highlighted.This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信