部分切比雪夫多项式和扇形图。

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wojciech Młotkowski, Nobuaki Obata
{"title":"部分切比雪夫多项式和扇形图。","authors":"Wojciech Młotkowski, Nobuaki Obata","doi":"10.1098/rsta.2024.0417","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the product formula of the Chebyshev polynomials of the second kind [Formula: see text], we newly introduce the partial Chebyshev polynomials [Formula: see text] and [Formula: see text] and derive their basic properties, relations to the classical Chebyshev polynomials and new factorization formulas for [Formula: see text]. To calculate the quadratic embedding constant (QEC) of a fan graph [Formula: see text], we derive a new polynomial [Formula: see text], which is factorized by the partial Chebyshev polynomial [Formula: see text]. We prove that [Formula: see text] is given in terms of the minimal zero of [Formula: see text] and obtain the explicit value of [Formula: see text] for an even [Formula: see text] and its reasonable estimate for an odd [Formula: see text].This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2306","pages":"20240417"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Chebyshev polynomials and fan graphs.\",\"authors\":\"Wojciech Młotkowski, Nobuaki Obata\",\"doi\":\"10.1098/rsta.2024.0417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by the product formula of the Chebyshev polynomials of the second kind [Formula: see text], we newly introduce the partial Chebyshev polynomials [Formula: see text] and [Formula: see text] and derive their basic properties, relations to the classical Chebyshev polynomials and new factorization formulas for [Formula: see text]. To calculate the quadratic embedding constant (QEC) of a fan graph [Formula: see text], we derive a new polynomial [Formula: see text], which is factorized by the partial Chebyshev polynomial [Formula: see text]. We prove that [Formula: see text] is given in terms of the minimal zero of [Formula: see text] and obtain the explicit value of [Formula: see text] for an even [Formula: see text] and its reasonable estimate for an odd [Formula: see text].This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2306\",\"pages\":\"20240417\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0417\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0417","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在第二类切比雪夫多项式的乘积公式[公式:见文]的启发下,我们新引入了部分切比雪夫多项式[公式:见文]和[公式:见文],并推导了它们的基本性质、与经典切比雪夫多项式的关系以及[公式:见文]的新的因式分解公式。为了计算扇形图的二次嵌入常数(QEC)[公式:见文],我们推导了一个新的多项式[公式:见文],它被部分切比雪夫多项式[公式:见文]分解。我们证明了[公式:见文]是用[公式:见文]的最小零给出的,并得到了[公式:见文]对偶[公式:见文]的显式值及其对奇[公式:见文]的合理估计。本文是专题“数值分析、谱图理论、正交多项式和量子算法”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Chebyshev polynomials and fan graphs.

Motivated by the product formula of the Chebyshev polynomials of the second kind [Formula: see text], we newly introduce the partial Chebyshev polynomials [Formula: see text] and [Formula: see text] and derive their basic properties, relations to the classical Chebyshev polynomials and new factorization formulas for [Formula: see text]. To calculate the quadratic embedding constant (QEC) of a fan graph [Formula: see text], we derive a new polynomial [Formula: see text], which is factorized by the partial Chebyshev polynomial [Formula: see text]. We prove that [Formula: see text] is given in terms of the minimal zero of [Formula: see text] and obtain the explicit value of [Formula: see text] for an even [Formula: see text] and its reasonable estimate for an odd [Formula: see text].This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信