WGX50通过EGFR靶向铁下垂和氧化还原稳态来减轻放射性肠炎。

IF 6.4 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhijing Yin, Guanjun Chen, Yunqing Liu, Yiqi Tan, Jingyi Tang, Ganghua Zhang, Dongqing Wei, Yuxing Zhu, Ke Cao
{"title":"WGX50通过EGFR靶向铁下垂和氧化还原稳态来减轻放射性肠炎。","authors":"Zhijing Yin, Guanjun Chen, Yunqing Liu, Yiqi Tan, Jingyi Tang, Ganghua Zhang, Dongqing Wei, Yuxing Zhu, Ke Cao","doi":"10.1186/s10020-025-01375-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiation enteritis (RE) is a common complication in patients undergoing abdominal and pelvic radiotherapy. Despite the advancements in radiotherapy, effective treatments remain limited. WGX50, a bioactive compound from Sichuan pepper, has shown anti-inflammatory and antioxidant properties. This study investigates the protective effects of WGX50 on RE, focusing on its potential to reduce radiation-induced damage in the intestine.</p><p><strong>Methods: </strong>Network pharmacology and molecular docking were used to identify the molecular targets of WGX50. In vitro, human intestinal epithelial cells (HIEC6) and colon cells (NCM460) were exposed to radiation and treated with WGX50. In vivo, C57BL/6 mice were administered WGX50 prior to radiation exposure. Various assays, including CCK-8, colony formation, flow cytometry, histopathology, and 16S rRNA sequencing, were performed to evaluate cell proliferation, apoptosis, oxidative stress, intestinal damage, and gut microbiota composition. Tissue transcriptome sequencing was conducted to explore differentially expressed genes.</p><p><strong>Results: </strong>In vitro, WGX50 significantly mitigated radiation-induced cell damage, enhanced cell proliferation, and reduced apoptosis at non-toxic concentrations. In vivo, WGX50 treatment preserved intestinal morphology and reduced inflammatory infiltration in irradiated mice. WGX50 also protected goblet cells, maintaining mucin production and epithelial barrier function critical for intestinal homeostasis. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) revealed stable binding of WGX50 to Epidermal Growth Factor Receptor (EGFR), key targets involved in oxidative stress regulation and ferroptosis inhibition. Mechanistically, WGX50 upregulated the EGFR-SLC7A11-GPX4 axis, suppressing ferroptosis and protecting intestinal cells. Additionally, 16S rRNA sequencing showed that WGX50 mitigated radiation-induced gut microbiota dysbiosis, preserving microbial diversity and promoting beneficial bacterial populations.</p><p><strong>Conclusion: </strong>WGX50 demonstrates potent radioprotective effects by reducing oxidative stress, suppressing ferroptosis, and maintaining intestinal homeostasis, including goblet cell function and gut microbiota composition. These findings support WGX50's potential as a novel therapeutic agent for the prevention and treatment of radiation enteritis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"309"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505694/pdf/","citationCount":"0","resultStr":"{\"title\":\"WGX50 attenuates radiation enteritis by targeting ferroptosis and redox homeostasis via EGFR.\",\"authors\":\"Zhijing Yin, Guanjun Chen, Yunqing Liu, Yiqi Tan, Jingyi Tang, Ganghua Zhang, Dongqing Wei, Yuxing Zhu, Ke Cao\",\"doi\":\"10.1186/s10020-025-01375-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Radiation enteritis (RE) is a common complication in patients undergoing abdominal and pelvic radiotherapy. Despite the advancements in radiotherapy, effective treatments remain limited. WGX50, a bioactive compound from Sichuan pepper, has shown anti-inflammatory and antioxidant properties. This study investigates the protective effects of WGX50 on RE, focusing on its potential to reduce radiation-induced damage in the intestine.</p><p><strong>Methods: </strong>Network pharmacology and molecular docking were used to identify the molecular targets of WGX50. In vitro, human intestinal epithelial cells (HIEC6) and colon cells (NCM460) were exposed to radiation and treated with WGX50. In vivo, C57BL/6 mice were administered WGX50 prior to radiation exposure. Various assays, including CCK-8, colony formation, flow cytometry, histopathology, and 16S rRNA sequencing, were performed to evaluate cell proliferation, apoptosis, oxidative stress, intestinal damage, and gut microbiota composition. Tissue transcriptome sequencing was conducted to explore differentially expressed genes.</p><p><strong>Results: </strong>In vitro, WGX50 significantly mitigated radiation-induced cell damage, enhanced cell proliferation, and reduced apoptosis at non-toxic concentrations. In vivo, WGX50 treatment preserved intestinal morphology and reduced inflammatory infiltration in irradiated mice. WGX50 also protected goblet cells, maintaining mucin production and epithelial barrier function critical for intestinal homeostasis. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) revealed stable binding of WGX50 to Epidermal Growth Factor Receptor (EGFR), key targets involved in oxidative stress regulation and ferroptosis inhibition. Mechanistically, WGX50 upregulated the EGFR-SLC7A11-GPX4 axis, suppressing ferroptosis and protecting intestinal cells. Additionally, 16S rRNA sequencing showed that WGX50 mitigated radiation-induced gut microbiota dysbiosis, preserving microbial diversity and promoting beneficial bacterial populations.</p><p><strong>Conclusion: </strong>WGX50 demonstrates potent radioprotective effects by reducing oxidative stress, suppressing ferroptosis, and maintaining intestinal homeostasis, including goblet cell function and gut microbiota composition. These findings support WGX50's potential as a novel therapeutic agent for the prevention and treatment of radiation enteritis.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"31 1\",\"pages\":\"309\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505694/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-025-01375-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01375-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:放射性肠炎(RE)是腹部和盆腔放疗患者的常见并发症。尽管放射治疗取得了进步,但有效的治疗方法仍然有限。WGX50是一种从花椒中提取的生物活性化合物,具有抗炎、抗氧化的作用。本研究探讨了WGX50对RE的保护作用,重点关注其减少辐射引起的肠道损伤的潜力。方法:采用网络药理学、分子对接等方法对WGX50的分子靶点进行鉴定。在体外,将人肠上皮细胞(HIEC6)和结肠细胞(NCM460)暴露于辐射并用WGX50处理。在体内,C57BL/6小鼠在辐射暴露前给予WGX50。通过CCK-8、菌落形成、流式细胞术、组织病理学和16S rRNA测序等多种检测来评估细胞增殖、凋亡、氧化应激、肠道损伤和肠道微生物群组成。进行组织转录组测序以探索差异表达基因。结果:WGX50在体外无毒浓度下可显著减轻辐射诱导的细胞损伤,增强细胞增殖,减少细胞凋亡。在体内,WGX50处理保留了受辐射小鼠的肠道形态,减少了炎症浸润。WGX50还保护杯状细胞,维持黏蛋白的产生和上皮屏障功能,这对肠道稳态至关重要。分子对接、动力学模拟和表面等离子体共振(SPR)表明,WGX50与表皮生长因子受体(EGFR)稳定结合,EGFR是参与氧化应激调节和抑制铁下沉的关键靶点。机制上,WGX50上调EGFR-SLC7A11-GPX4轴,抑制铁下垂,保护肠细胞。此外,16S rRNA测序显示,WGX50减轻了辐射诱导的肠道菌群失调,保持了微生物多样性,促进了有益菌群。结论:WGX50通过降低氧化应激,抑制铁下垂,维持肠道内稳态,包括杯状细胞功能和肠道菌群组成,具有强大的辐射防护作用。这些发现支持WGX50作为一种预防和治疗放射性肠炎的新型治疗剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WGX50 attenuates radiation enteritis by targeting ferroptosis and redox homeostasis via EGFR.

Background: Radiation enteritis (RE) is a common complication in patients undergoing abdominal and pelvic radiotherapy. Despite the advancements in radiotherapy, effective treatments remain limited. WGX50, a bioactive compound from Sichuan pepper, has shown anti-inflammatory and antioxidant properties. This study investigates the protective effects of WGX50 on RE, focusing on its potential to reduce radiation-induced damage in the intestine.

Methods: Network pharmacology and molecular docking were used to identify the molecular targets of WGX50. In vitro, human intestinal epithelial cells (HIEC6) and colon cells (NCM460) were exposed to radiation and treated with WGX50. In vivo, C57BL/6 mice were administered WGX50 prior to radiation exposure. Various assays, including CCK-8, colony formation, flow cytometry, histopathology, and 16S rRNA sequencing, were performed to evaluate cell proliferation, apoptosis, oxidative stress, intestinal damage, and gut microbiota composition. Tissue transcriptome sequencing was conducted to explore differentially expressed genes.

Results: In vitro, WGX50 significantly mitigated radiation-induced cell damage, enhanced cell proliferation, and reduced apoptosis at non-toxic concentrations. In vivo, WGX50 treatment preserved intestinal morphology and reduced inflammatory infiltration in irradiated mice. WGX50 also protected goblet cells, maintaining mucin production and epithelial barrier function critical for intestinal homeostasis. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) revealed stable binding of WGX50 to Epidermal Growth Factor Receptor (EGFR), key targets involved in oxidative stress regulation and ferroptosis inhibition. Mechanistically, WGX50 upregulated the EGFR-SLC7A11-GPX4 axis, suppressing ferroptosis and protecting intestinal cells. Additionally, 16S rRNA sequencing showed that WGX50 mitigated radiation-induced gut microbiota dysbiosis, preserving microbial diversity and promoting beneficial bacterial populations.

Conclusion: WGX50 demonstrates potent radioprotective effects by reducing oxidative stress, suppressing ferroptosis, and maintaining intestinal homeostasis, including goblet cell function and gut microbiota composition. These findings support WGX50's potential as a novel therapeutic agent for the prevention and treatment of radiation enteritis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信