Alana Mullins, Xuefei Yu, Anna Smith, George Merces, James Am Shaw, Laura Greaves, Mark Walker, Catherine Arden
{"title":"2型糖尿病胰岛氧化磷酸化蛋白表达的单细胞分析。","authors":"Alana Mullins, Xuefei Yu, Anna Smith, George Merces, James Am Shaw, Laura Greaves, Mark Walker, Catherine Arden","doi":"10.1530/JOE-25-0253","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction is a key feature of type 2 diabetes and is closely linked to ageing, a major risk factor for the disease. This study investigated islet cell composition and mitochondrial oxidative phosphorylation protein expression in pancreatic tissue from older donors (≥62 years) with and without type 2 diabetes, matched for age, sex, and BMI. Fixed human pancreatic tissue sections were immunolabelled for insulin, glucagon, NDUFB8 (complex I), MTCO1 (complex IV), and VDAC1 (a mitochondrial mass marker) to quantify islet composition and mitochondrial protein levels. A machine learning-based single-cell segmentation pipeline enabled high-resolution profiling of individual cell populations within islets. In type 2 diabetes, islets exhibited an increased alpha: beta cell ratio, altered spatial organisation with fewer beta-beta and more alpha-alpha interactions, and a significantly higher proportion of bi-hormonal cells co-expressing insulin and glucagon. Within beta cells, we observed significant changes in mitochondrial protein expression, including reduced complex I and elevated complex IV levels. Unsupervised clustering of mitochondrial expression patterns identified three distinct beta cell expression clusters. Donors with type 2 diabetes showed a marked shift in distribution of beta cells across clusters, with increased proportions of beta cells exhibiting low complex I and high complex IV expression. These results highlight significant alterations in islet architecture and mitochondrial protein expression associated with type 2 diabetes, providing new insights into the mechanisms underlying type 2 diabetes.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Analysis of Oxidative Phosphorylation Protein Expression in Pancreatic Islets in Type 2 Diabetes.\",\"authors\":\"Alana Mullins, Xuefei Yu, Anna Smith, George Merces, James Am Shaw, Laura Greaves, Mark Walker, Catherine Arden\",\"doi\":\"10.1530/JOE-25-0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction is a key feature of type 2 diabetes and is closely linked to ageing, a major risk factor for the disease. This study investigated islet cell composition and mitochondrial oxidative phosphorylation protein expression in pancreatic tissue from older donors (≥62 years) with and without type 2 diabetes, matched for age, sex, and BMI. Fixed human pancreatic tissue sections were immunolabelled for insulin, glucagon, NDUFB8 (complex I), MTCO1 (complex IV), and VDAC1 (a mitochondrial mass marker) to quantify islet composition and mitochondrial protein levels. A machine learning-based single-cell segmentation pipeline enabled high-resolution profiling of individual cell populations within islets. In type 2 diabetes, islets exhibited an increased alpha: beta cell ratio, altered spatial organisation with fewer beta-beta and more alpha-alpha interactions, and a significantly higher proportion of bi-hormonal cells co-expressing insulin and glucagon. Within beta cells, we observed significant changes in mitochondrial protein expression, including reduced complex I and elevated complex IV levels. Unsupervised clustering of mitochondrial expression patterns identified three distinct beta cell expression clusters. Donors with type 2 diabetes showed a marked shift in distribution of beta cells across clusters, with increased proportions of beta cells exhibiting low complex I and high complex IV expression. These results highlight significant alterations in islet architecture and mitochondrial protein expression associated with type 2 diabetes, providing new insights into the mechanisms underlying type 2 diabetes.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-25-0253\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-25-0253","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Single-Cell Analysis of Oxidative Phosphorylation Protein Expression in Pancreatic Islets in Type 2 Diabetes.
Mitochondrial dysfunction is a key feature of type 2 diabetes and is closely linked to ageing, a major risk factor for the disease. This study investigated islet cell composition and mitochondrial oxidative phosphorylation protein expression in pancreatic tissue from older donors (≥62 years) with and without type 2 diabetes, matched for age, sex, and BMI. Fixed human pancreatic tissue sections were immunolabelled for insulin, glucagon, NDUFB8 (complex I), MTCO1 (complex IV), and VDAC1 (a mitochondrial mass marker) to quantify islet composition and mitochondrial protein levels. A machine learning-based single-cell segmentation pipeline enabled high-resolution profiling of individual cell populations within islets. In type 2 diabetes, islets exhibited an increased alpha: beta cell ratio, altered spatial organisation with fewer beta-beta and more alpha-alpha interactions, and a significantly higher proportion of bi-hormonal cells co-expressing insulin and glucagon. Within beta cells, we observed significant changes in mitochondrial protein expression, including reduced complex I and elevated complex IV levels. Unsupervised clustering of mitochondrial expression patterns identified three distinct beta cell expression clusters. Donors with type 2 diabetes showed a marked shift in distribution of beta cells across clusters, with increased proportions of beta cells exhibiting low complex I and high complex IV expression. These results highlight significant alterations in islet architecture and mitochondrial protein expression associated with type 2 diabetes, providing new insights into the mechanisms underlying type 2 diabetes.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.