用于分析多模态张量层析成像数据的Python包。

IF 2.8 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology
Journal of Applied Crystallography Pub Date : 2025-09-12 eCollection Date: 2025-10-01 DOI:10.1107/S1600576725007289
Leonard C Nielsen, Mads Carlsen, Sici Wang, Arthur Baroni, Torne Tänzer, Marianne Liebi, Paul Erhart
{"title":"用于分析多模态张量层析成像数据的Python包。","authors":"Leonard C Nielsen, Mads Carlsen, Sici Wang, Arthur Baroni, Torne Tänzer, Marianne Liebi, Paul Erhart","doi":"10.1107/S1600576725007289","DOIUrl":null,"url":null,"abstract":"<p><p>Small- and wide-angle X-ray scattering tensor tomography are powerful methods for studying anisotropic nanostructures in a volume-resolved manner and are becoming increasingly available to users of synchrotron facilities. The analysis of such experiments requires advanced procedures and algorithms, which creates a barrier for the wider adoption of these techniques. Here, in response to this challenge, we introduce the <i>MUMOTT</i> package. It is written in Python, with computationally demanding tasks handled via just-in-time compilation using both CPU and GPU resources. The package has been developed with a focus on usability and extensibility, while achieving a high computational efficiency. Following a short introduction to the common workflow, we review key features, outline the underlying object-oriented framework and demonstrate the computational performance. By developing the <i>MUMOTT</i> package and making it generally available, we hope to lower the threshold for the adoption of tensor tomography and to make these techniques accessible to a larger research community.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 5","pages":"1834-1845"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502856/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>MUMOTT</i>: a Python package for the analysis of multi-modal tensor tomography data.\",\"authors\":\"Leonard C Nielsen, Mads Carlsen, Sici Wang, Arthur Baroni, Torne Tänzer, Marianne Liebi, Paul Erhart\",\"doi\":\"10.1107/S1600576725007289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small- and wide-angle X-ray scattering tensor tomography are powerful methods for studying anisotropic nanostructures in a volume-resolved manner and are becoming increasingly available to users of synchrotron facilities. The analysis of such experiments requires advanced procedures and algorithms, which creates a barrier for the wider adoption of these techniques. Here, in response to this challenge, we introduce the <i>MUMOTT</i> package. It is written in Python, with computationally demanding tasks handled via just-in-time compilation using both CPU and GPU resources. The package has been developed with a focus on usability and extensibility, while achieving a high computational efficiency. Following a short introduction to the common workflow, we review key features, outline the underlying object-oriented framework and demonstrate the computational performance. By developing the <i>MUMOTT</i> package and making it generally available, we hope to lower the threshold for the adoption of tensor tomography and to make these techniques accessible to a larger research community.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 5\",\"pages\":\"1834-1845\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725007289\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725007289","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

小角和广角x射线散射张量层析成像是研究各向异性纳米结构的有效方法,在同步加速器设备的用户中越来越有用。对这些实验的分析需要先进的程序和算法,这为这些技术的广泛采用创造了障碍。在这里,为了应对这一挑战,我们介绍MUMOTT包。它是用Python编写的,通过使用CPU和GPU资源的实时编译来处理计算要求很高的任务。该软件包的开发重点是可用性和可扩展性,同时实现了高计算效率。在对通用工作流的简短介绍之后,我们回顾了关键功能,概述了底层面向对象框架并演示了计算性能。通过开发MUMOTT包并使其普遍可用,我们希望降低采用张量层析成像的门槛,并使这些技术能够为更大的研究社区所使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MUMOTT: a Python package for the analysis of multi-modal tensor tomography data.

Small- and wide-angle X-ray scattering tensor tomography are powerful methods for studying anisotropic nanostructures in a volume-resolved manner and are becoming increasingly available to users of synchrotron facilities. The analysis of such experiments requires advanced procedures and algorithms, which creates a barrier for the wider adoption of these techniques. Here, in response to this challenge, we introduce the MUMOTT package. It is written in Python, with computationally demanding tasks handled via just-in-time compilation using both CPU and GPU resources. The package has been developed with a focus on usability and extensibility, while achieving a high computational efficiency. Following a short introduction to the common workflow, we review key features, outline the underlying object-oriented framework and demonstrate the computational performance. By developing the MUMOTT package and making it generally available, we hope to lower the threshold for the adoption of tensor tomography and to make these techniques accessible to a larger research community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信