{"title":"Styracifolium总类黄酮类化合物通过P53/SLC7A11/GPX4信号通路抑制铁凋亡,减轻肾缺血再灌注损伤;(标题)TFDS减轻肾缺血再灌注损伤。","authors":"Fangchao Yuan, Qiongyao Peng, Qirui Wang, Qiang Tan, Haiyang Tang, Jie Li, Beike Chen","doi":"10.1007/s10863-025-10076-9","DOIUrl":null,"url":null,"abstract":"<p><p>Renal ischemia/reperfusion injury (RIRI), a common complication of renal transplantation, partial nephrectomy, and transient hypoperfusion, is a major etiological factor of acute kidney injury (AKI) with limited treatment options. Total flavonoids from Desmodium styracifolium (TFDS), a traditional Chinese medicinal herb used in urinary disorders, have shown promising renoprotective properties. This study aimed to investigate the efficacy of TFDS against RIRI and elucidate its underlying mechanisms, with a particular focus on oxidative stress and ferroptosis. A RIRI model was established in C57BL/6J mice, and the effects of TFDS were evaluated in both in vivo and in vitro hypoxia/reoxygenation (H/R) models. Evaluation of renal function was performed by measuring serum blood urea nitrogen (BUN) and creatinine levels. Histopathological and ultrastructural alterations were examined using hematoxylin-eosin (H&E) staining and transmission electron microscopy (TEM). Oxidative stress and ferroptosis were evaluated by determining glutathione (GSH) levels, malondialdehyde (MDA) content, reactive oxygen species (ROS) levels, and iron accumulation. Potential therapeutic targets and pathways were predicted by network pharmacology and further validated through Western blot (WB) and immunofluorescence analyses. In vivo, TFDS administration markedly improved renal function in RIRI mice, as evidenced by significant reductions in serum BUN and creatinine levels, and attenuated histopathological damage, including tubular epithelial cell loss and mitochondrial structural disruption. TFDS also decreased tissue iron and malondialdehyde (MDA) levels while restoring GSH content, thereby alleviating oxidative stress and ferroptosis. In vitro, TFDS enhanced HK-2 cell viability after hypoxia/reoxygenation injury, reduced intracellular ROS, iron, and MDA accumulation, and preserved mitochondrial morphology. Network pharmacology and molecular docking identified TP53 as a central target, with vicenin-2, schaftoside, and isovitexin exhibiting strong binding affinity to P53. Mechanistically, TFDS downregulated P53 expression and upregulated SLC7A11 and GPX4 both in vivo and in vitro, effects that were abolished by the P53 agonist Kevetrin, confirming the involvement of the P53/SLC7A11/GPX4 axis in TFDS-mediated ferroptosis suppression. TFDS alleviates kidney injury following RIRI by attenuating oxidative stress and suppressing ferroptosis, effects mediated at least in part through modulation of the P53/SLC7A11/GPX4 signaling axis. These findings identify TFDS as a promising therapeutic candidate for ischemic kidney injury and provide mechanistic insight supporting its potential clinical application.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total favonoids of Desmodium Styracifolium relieve renal ischemia-reperfusion injury by suppressing ferroptosis through P53/SLC7A11/GPX4 signaling pathway : (Running title) TFDS relieved renal ischemia-reperfusion injury.\",\"authors\":\"Fangchao Yuan, Qiongyao Peng, Qirui Wang, Qiang Tan, Haiyang Tang, Jie Li, Beike Chen\",\"doi\":\"10.1007/s10863-025-10076-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Renal ischemia/reperfusion injury (RIRI), a common complication of renal transplantation, partial nephrectomy, and transient hypoperfusion, is a major etiological factor of acute kidney injury (AKI) with limited treatment options. Total flavonoids from Desmodium styracifolium (TFDS), a traditional Chinese medicinal herb used in urinary disorders, have shown promising renoprotective properties. This study aimed to investigate the efficacy of TFDS against RIRI and elucidate its underlying mechanisms, with a particular focus on oxidative stress and ferroptosis. A RIRI model was established in C57BL/6J mice, and the effects of TFDS were evaluated in both in vivo and in vitro hypoxia/reoxygenation (H/R) models. Evaluation of renal function was performed by measuring serum blood urea nitrogen (BUN) and creatinine levels. Histopathological and ultrastructural alterations were examined using hematoxylin-eosin (H&E) staining and transmission electron microscopy (TEM). Oxidative stress and ferroptosis were evaluated by determining glutathione (GSH) levels, malondialdehyde (MDA) content, reactive oxygen species (ROS) levels, and iron accumulation. Potential therapeutic targets and pathways were predicted by network pharmacology and further validated through Western blot (WB) and immunofluorescence analyses. In vivo, TFDS administration markedly improved renal function in RIRI mice, as evidenced by significant reductions in serum BUN and creatinine levels, and attenuated histopathological damage, including tubular epithelial cell loss and mitochondrial structural disruption. TFDS also decreased tissue iron and malondialdehyde (MDA) levels while restoring GSH content, thereby alleviating oxidative stress and ferroptosis. In vitro, TFDS enhanced HK-2 cell viability after hypoxia/reoxygenation injury, reduced intracellular ROS, iron, and MDA accumulation, and preserved mitochondrial morphology. Network pharmacology and molecular docking identified TP53 as a central target, with vicenin-2, schaftoside, and isovitexin exhibiting strong binding affinity to P53. Mechanistically, TFDS downregulated P53 expression and upregulated SLC7A11 and GPX4 both in vivo and in vitro, effects that were abolished by the P53 agonist Kevetrin, confirming the involvement of the P53/SLC7A11/GPX4 axis in TFDS-mediated ferroptosis suppression. TFDS alleviates kidney injury following RIRI by attenuating oxidative stress and suppressing ferroptosis, effects mediated at least in part through modulation of the P53/SLC7A11/GPX4 signaling axis. These findings identify TFDS as a promising therapeutic candidate for ischemic kidney injury and provide mechanistic insight supporting its potential clinical application.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-025-10076-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-025-10076-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Total favonoids of Desmodium Styracifolium relieve renal ischemia-reperfusion injury by suppressing ferroptosis through P53/SLC7A11/GPX4 signaling pathway : (Running title) TFDS relieved renal ischemia-reperfusion injury.
Renal ischemia/reperfusion injury (RIRI), a common complication of renal transplantation, partial nephrectomy, and transient hypoperfusion, is a major etiological factor of acute kidney injury (AKI) with limited treatment options. Total flavonoids from Desmodium styracifolium (TFDS), a traditional Chinese medicinal herb used in urinary disorders, have shown promising renoprotective properties. This study aimed to investigate the efficacy of TFDS against RIRI and elucidate its underlying mechanisms, with a particular focus on oxidative stress and ferroptosis. A RIRI model was established in C57BL/6J mice, and the effects of TFDS were evaluated in both in vivo and in vitro hypoxia/reoxygenation (H/R) models. Evaluation of renal function was performed by measuring serum blood urea nitrogen (BUN) and creatinine levels. Histopathological and ultrastructural alterations were examined using hematoxylin-eosin (H&E) staining and transmission electron microscopy (TEM). Oxidative stress and ferroptosis were evaluated by determining glutathione (GSH) levels, malondialdehyde (MDA) content, reactive oxygen species (ROS) levels, and iron accumulation. Potential therapeutic targets and pathways were predicted by network pharmacology and further validated through Western blot (WB) and immunofluorescence analyses. In vivo, TFDS administration markedly improved renal function in RIRI mice, as evidenced by significant reductions in serum BUN and creatinine levels, and attenuated histopathological damage, including tubular epithelial cell loss and mitochondrial structural disruption. TFDS also decreased tissue iron and malondialdehyde (MDA) levels while restoring GSH content, thereby alleviating oxidative stress and ferroptosis. In vitro, TFDS enhanced HK-2 cell viability after hypoxia/reoxygenation injury, reduced intracellular ROS, iron, and MDA accumulation, and preserved mitochondrial morphology. Network pharmacology and molecular docking identified TP53 as a central target, with vicenin-2, schaftoside, and isovitexin exhibiting strong binding affinity to P53. Mechanistically, TFDS downregulated P53 expression and upregulated SLC7A11 and GPX4 both in vivo and in vitro, effects that were abolished by the P53 agonist Kevetrin, confirming the involvement of the P53/SLC7A11/GPX4 axis in TFDS-mediated ferroptosis suppression. TFDS alleviates kidney injury following RIRI by attenuating oxidative stress and suppressing ferroptosis, effects mediated at least in part through modulation of the P53/SLC7A11/GPX4 signaling axis. These findings identify TFDS as a promising therapeutic candidate for ischemic kidney injury and provide mechanistic insight supporting its potential clinical application.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.