Jing Tao, Charles A Nock, Eric B Searle, Shongming Huang, Rongzhou Man, Hua Yang, Grégoire T Freschet, Cyrille Violle, Ji Zheng
{"title":"生物多样性实验中物种相互作用对生态系统生产力的影响。","authors":"Jing Tao, Charles A Nock, Eric B Searle, Shongming Huang, Rongzhou Man, Hua Yang, Grégoire T Freschet, Cyrille Violle, Ji Zheng","doi":"10.7554/eLife.98073","DOIUrl":null,"url":null,"abstract":"<p><p>Species interactions affect ecosystem productivity. Positive interactions (resource partitioning and facilitation) increase productivity while negative interactions (species interference) decrease productivity relative to the null expectations defined by monoculture yields. Effects of competitive interactions (resource competition) can be either positive or negative. Distinguishing effects of species interactions is therefore difficult, if not impossible, with current biodiversity experiments involving mixtures and full density monocultures. To partition changes in ecosystem productivity by effects of species interactions, we modify null expectations with competitive growth responses, i.e., proportional changes in individual size (biomass or volume) expected in mixture based on species differences in growth and competitive ability. We use partial density (species density in mixture) monocultures and the competitive exclusion principle to determine maximum competitive growth responses and full density monoculture yields to measure species ability to achieve maximum competitive growth responses in mixture. Deviations of observed yields from competitive expectations represent the effects of positive/negative species interactions, while the differences between competitive and null expectations reflect the effects of competitive interactions. We demonstrate the effectiveness of our competitive partitioning model in distinguishing effects of species interactions using both simulated and experimental species mixtures. Our competitive partitioning model enables meaningful assessments of species interactions at both species and community levels and helps disentangle underlying mechanisms of species interactions responsible for changes in ecosystem productivity and identify species mixtures that maximize positive effects.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510681/pdf/","citationCount":"0","resultStr":"{\"title\":\"Partitioning changes in ecosystem productivity by effects of species interactions in biodiversity experiments.\",\"authors\":\"Jing Tao, Charles A Nock, Eric B Searle, Shongming Huang, Rongzhou Man, Hua Yang, Grégoire T Freschet, Cyrille Violle, Ji Zheng\",\"doi\":\"10.7554/eLife.98073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Species interactions affect ecosystem productivity. Positive interactions (resource partitioning and facilitation) increase productivity while negative interactions (species interference) decrease productivity relative to the null expectations defined by monoculture yields. Effects of competitive interactions (resource competition) can be either positive or negative. Distinguishing effects of species interactions is therefore difficult, if not impossible, with current biodiversity experiments involving mixtures and full density monocultures. To partition changes in ecosystem productivity by effects of species interactions, we modify null expectations with competitive growth responses, i.e., proportional changes in individual size (biomass or volume) expected in mixture based on species differences in growth and competitive ability. We use partial density (species density in mixture) monocultures and the competitive exclusion principle to determine maximum competitive growth responses and full density monoculture yields to measure species ability to achieve maximum competitive growth responses in mixture. Deviations of observed yields from competitive expectations represent the effects of positive/negative species interactions, while the differences between competitive and null expectations reflect the effects of competitive interactions. We demonstrate the effectiveness of our competitive partitioning model in distinguishing effects of species interactions using both simulated and experimental species mixtures. Our competitive partitioning model enables meaningful assessments of species interactions at both species and community levels and helps disentangle underlying mechanisms of species interactions responsible for changes in ecosystem productivity and identify species mixtures that maximize positive effects.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.98073\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.98073","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Partitioning changes in ecosystem productivity by effects of species interactions in biodiversity experiments.
Species interactions affect ecosystem productivity. Positive interactions (resource partitioning and facilitation) increase productivity while negative interactions (species interference) decrease productivity relative to the null expectations defined by monoculture yields. Effects of competitive interactions (resource competition) can be either positive or negative. Distinguishing effects of species interactions is therefore difficult, if not impossible, with current biodiversity experiments involving mixtures and full density monocultures. To partition changes in ecosystem productivity by effects of species interactions, we modify null expectations with competitive growth responses, i.e., proportional changes in individual size (biomass or volume) expected in mixture based on species differences in growth and competitive ability. We use partial density (species density in mixture) monocultures and the competitive exclusion principle to determine maximum competitive growth responses and full density monoculture yields to measure species ability to achieve maximum competitive growth responses in mixture. Deviations of observed yields from competitive expectations represent the effects of positive/negative species interactions, while the differences between competitive and null expectations reflect the effects of competitive interactions. We demonstrate the effectiveness of our competitive partitioning model in distinguishing effects of species interactions using both simulated and experimental species mixtures. Our competitive partitioning model enables meaningful assessments of species interactions at both species and community levels and helps disentangle underlying mechanisms of species interactions responsible for changes in ecosystem productivity and identify species mixtures that maximize positive effects.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.