{"title":"体外和小鼠组织中自主和Ca2+/钙调素依赖CaMKK亚型活性的表征。","authors":"Satomi Ohtsuka, Yerun Chen, Masaki Magari, Teruhiko Ishikawa, Hiroyuki Sakagami, Futoshi Suizu, Hiroshi Tokumitsu","doi":"10.1021/acs.biochem.5c00477","DOIUrl":null,"url":null,"abstract":"<p><p>Ca<sup>2+</sup>/CaM-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream kinases, including CaMKI, CaMKIV, PKB, and AMPK, regulating various cellular functions such as neuronal morphogenesis, metabolic control, and pathophysiological pathways, such as cancer progression. CaMKKα/1 is tightly regulated by an autoinhibitory mechanism. CaMKKβ/2 activity is highly Ca<sup>2+</sup>/CaM-independent (autonomous activity) in vitro and Ca<sup>2+</sup>/CaM-dependent in cultured cells. Whether these two activity states of CaMKKβ/2 exist in vivo and the detailed regulatory mechanisms for the transition of both activity states remain unclear due to the difficulty in distinguishing the two activity states. In this study, we detected Ca<sup>2+</sup>-dependent and autonomous CaMKK activity in HeLa cells and successfully separated both activity states of CaMKKβ/2 in mouse brain and testis extracts using a recently developed CaMKK inhibitor (TIM-063)-coupled sepharose, which binds to the catalytic domain in the active state but not in the autoinhibited state. Furthermore, lambda protein phosphatase treatment converted the Ca<sup>2+</sup>/CaM-dependent form to the autonomous form of CaMKKβ/2, which was not affected by Ala mutation of Ser128, Ser132, and Ser136. The two activity forms of CaMKKβ/2 had equivalent Ca<sup>2+</sup>/CaM-binding ability. The findings demonstrate the presence of autonomous and Ca<sup>2+</sup>/CaM-dependent forms of CaMKKβ/2 independently in mouse tissues and cultured cells. The transition of these states of CaMKKβ/2 may be dynamically regulated by the phosphorylation/dephosphorylation of serine residues in the N-terminal regulatory domain.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Autonomous and Ca<sup>2<b>+</b></sup>/Calmodulin-Dependent Activities of CaMKK Isoforms In Vitro and in Mouse Tissues.\",\"authors\":\"Satomi Ohtsuka, Yerun Chen, Masaki Magari, Teruhiko Ishikawa, Hiroyuki Sakagami, Futoshi Suizu, Hiroshi Tokumitsu\",\"doi\":\"10.1021/acs.biochem.5c00477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ca<sup>2+</sup>/CaM-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream kinases, including CaMKI, CaMKIV, PKB, and AMPK, regulating various cellular functions such as neuronal morphogenesis, metabolic control, and pathophysiological pathways, such as cancer progression. CaMKKα/1 is tightly regulated by an autoinhibitory mechanism. CaMKKβ/2 activity is highly Ca<sup>2+</sup>/CaM-independent (autonomous activity) in vitro and Ca<sup>2+</sup>/CaM-dependent in cultured cells. Whether these two activity states of CaMKKβ/2 exist in vivo and the detailed regulatory mechanisms for the transition of both activity states remain unclear due to the difficulty in distinguishing the two activity states. In this study, we detected Ca<sup>2+</sup>-dependent and autonomous CaMKK activity in HeLa cells and successfully separated both activity states of CaMKKβ/2 in mouse brain and testis extracts using a recently developed CaMKK inhibitor (TIM-063)-coupled sepharose, which binds to the catalytic domain in the active state but not in the autoinhibited state. Furthermore, lambda protein phosphatase treatment converted the Ca<sup>2+</sup>/CaM-dependent form to the autonomous form of CaMKKβ/2, which was not affected by Ala mutation of Ser128, Ser132, and Ser136. The two activity forms of CaMKKβ/2 had equivalent Ca<sup>2+</sup>/CaM-binding ability. The findings demonstrate the presence of autonomous and Ca<sup>2+</sup>/CaM-dependent forms of CaMKKβ/2 independently in mouse tissues and cultured cells. The transition of these states of CaMKKβ/2 may be dynamically regulated by the phosphorylation/dephosphorylation of serine residues in the N-terminal regulatory domain.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.5c00477\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00477","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Characterization of Autonomous and Ca2+/Calmodulin-Dependent Activities of CaMKK Isoforms In Vitro and in Mouse Tissues.
Ca2+/CaM-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream kinases, including CaMKI, CaMKIV, PKB, and AMPK, regulating various cellular functions such as neuronal morphogenesis, metabolic control, and pathophysiological pathways, such as cancer progression. CaMKKα/1 is tightly regulated by an autoinhibitory mechanism. CaMKKβ/2 activity is highly Ca2+/CaM-independent (autonomous activity) in vitro and Ca2+/CaM-dependent in cultured cells. Whether these two activity states of CaMKKβ/2 exist in vivo and the detailed regulatory mechanisms for the transition of both activity states remain unclear due to the difficulty in distinguishing the two activity states. In this study, we detected Ca2+-dependent and autonomous CaMKK activity in HeLa cells and successfully separated both activity states of CaMKKβ/2 in mouse brain and testis extracts using a recently developed CaMKK inhibitor (TIM-063)-coupled sepharose, which binds to the catalytic domain in the active state but not in the autoinhibited state. Furthermore, lambda protein phosphatase treatment converted the Ca2+/CaM-dependent form to the autonomous form of CaMKKβ/2, which was not affected by Ala mutation of Ser128, Ser132, and Ser136. The two activity forms of CaMKKβ/2 had equivalent Ca2+/CaM-binding ability. The findings demonstrate the presence of autonomous and Ca2+/CaM-dependent forms of CaMKKβ/2 independently in mouse tissues and cultured cells. The transition of these states of CaMKKβ/2 may be dynamically regulated by the phosphorylation/dephosphorylation of serine residues in the N-terminal regulatory domain.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.