不同地区的空气云水pH值测量:统计和与成分的关系

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Kayla M. Preisler, Ewan C. Crosbie, Miguel Ricardo A. Hilario, Grace Betito, Rachel A. Braun, Andrea F. Corral, Eva-Lou Edwards, Alexander B. MacDonald, Ali Hossein Mardi, Michael A. Shook, Connor Stahl, Edward L. Winstead, Kira Zeider, Luke D. Ziemba and Armin Sorooshian
{"title":"不同地区的空气云水pH值测量:统计和与成分的关系","authors":"Kayla M. Preisler, Ewan C. Crosbie, Miguel Ricardo A. Hilario, Grace Betito, Rachel A. Braun, Andrea F. Corral, Eva-Lou Edwards, Alexander B. MacDonald, Ali Hossein Mardi, Michael A. Shook, Connor Stahl, Edward L. Winstead, Kira Zeider, Luke D. Ziemba and Armin Sorooshian","doi":"10.1039/D5EA00070J","DOIUrl":null,"url":null,"abstract":"<p >Airborne cloud water measurements are examined in this study, with a focus on pH and interrelationships with influential species for three regions: the Northwest Atlantic (winter and summer 2020–2022), the West Pacific (summer 2019), and the Northeast Pacific (summers between 2011 and 2019). Northwest Atlantic results are categorized into three ways: data closer to the U.S. east coast for (i) winter, (ii) summer, and (iii) summertime measurements over Bermuda. The median pHs are as follows: Northwest Atlantic winter/summer = 4.83/4.96, Bermuda = 4.74, West Pacific = 5.17, and Northeast Pacific = 4.40. The regions exhibit median pH values of ∼4–6 across various altitude bins reaching as high as 6.8 km, with the overall minimum and maximum values being 2.92 and 7.58, respectively (both for the Northeast Pacific). Principal component analysis of species to predict pH shows that the most influential principal component is anthropogenic in nature. Machine leaning modeling suggests that the most effective combination of species to predict pH includes some subset of oxalate, non-sea salt Ca<small><sup>2+</sup></small>, NO<small><sub>3</sub></small><small><sup>−</sup></small>, non-sea salt SO<small><sub>4</sub></small><small><sup>2−</sup></small>, and methanesulfonate. These results demonstrate that cloud water acidity is relatively well constrained between a pH of 4 and 5.5 and that anthropogenic activities impact regional cloud water pH in the areas examined, with dust offsetting acidity at times.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 10","pages":" 1158-1172"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00070j?page=search","citationCount":"0","resultStr":"{\"title\":\"Airborne cloud water pH measurements in diverse regions: statistics and relationships with constituents\",\"authors\":\"Kayla M. Preisler, Ewan C. Crosbie, Miguel Ricardo A. Hilario, Grace Betito, Rachel A. Braun, Andrea F. Corral, Eva-Lou Edwards, Alexander B. MacDonald, Ali Hossein Mardi, Michael A. Shook, Connor Stahl, Edward L. Winstead, Kira Zeider, Luke D. Ziemba and Armin Sorooshian\",\"doi\":\"10.1039/D5EA00070J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Airborne cloud water measurements are examined in this study, with a focus on pH and interrelationships with influential species for three regions: the Northwest Atlantic (winter and summer 2020–2022), the West Pacific (summer 2019), and the Northeast Pacific (summers between 2011 and 2019). Northwest Atlantic results are categorized into three ways: data closer to the U.S. east coast for (i) winter, (ii) summer, and (iii) summertime measurements over Bermuda. The median pHs are as follows: Northwest Atlantic winter/summer = 4.83/4.96, Bermuda = 4.74, West Pacific = 5.17, and Northeast Pacific = 4.40. The regions exhibit median pH values of ∼4–6 across various altitude bins reaching as high as 6.8 km, with the overall minimum and maximum values being 2.92 and 7.58, respectively (both for the Northeast Pacific). Principal component analysis of species to predict pH shows that the most influential principal component is anthropogenic in nature. Machine leaning modeling suggests that the most effective combination of species to predict pH includes some subset of oxalate, non-sea salt Ca<small><sup>2+</sup></small>, NO<small><sub>3</sub></small><small><sup>−</sup></small>, non-sea salt SO<small><sub>4</sub></small><small><sup>2−</sup></small>, and methanesulfonate. These results demonstrate that cloud water acidity is relatively well constrained between a pH of 4 and 5.5 and that anthropogenic activities impact regional cloud water pH in the areas examined, with dust offsetting acidity at times.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 10\",\"pages\":\" 1158-1172\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00070j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00070j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00070j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了机载云水测量,重点关注三个地区的pH值及其与有影响物种的相互关系:西北大西洋(2020-2022年冬季和夏季)、西太平洋(2019年夏季)和东北太平洋(2011年至2019年夏季)。西北大西洋的结果分为三种方式:接近美国东海岸的数据(1)冬季,(2)夏季,(3)夏季在百慕大上空的测量。ph值中位数如下:西北大西洋冬季/夏季= 4.83/4.96,百慕大= 4.74,西太平洋= 5.17,东北太平洋= 4.40。这些地区在不同海拔区域的pH值中位数为~ 4-6,最高可达6.8 km,总体最小值和最大值分别为2.92和7.58(均为东北太平洋)。物种主成分分析预测pH值的结果表明,在自然界中影响最大的主成分是人为的。机器学习模型表明,预测pH值最有效的物种组合包括草酸盐、非海盐Ca2+、NO3−、非海盐SO42−和甲烷磺酸盐的某些子集。这些结果表明,云水酸度相对较好地限制在pH为4和5.5之间,并且人为活动影响了所检查地区的区域云水pH,有时灰尘抵消了酸度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Airborne cloud water pH measurements in diverse regions: statistics and relationships with constituents

Airborne cloud water pH measurements in diverse regions: statistics and relationships with constituents

Airborne cloud water measurements are examined in this study, with a focus on pH and interrelationships with influential species for three regions: the Northwest Atlantic (winter and summer 2020–2022), the West Pacific (summer 2019), and the Northeast Pacific (summers between 2011 and 2019). Northwest Atlantic results are categorized into three ways: data closer to the U.S. east coast for (i) winter, (ii) summer, and (iii) summertime measurements over Bermuda. The median pHs are as follows: Northwest Atlantic winter/summer = 4.83/4.96, Bermuda = 4.74, West Pacific = 5.17, and Northeast Pacific = 4.40. The regions exhibit median pH values of ∼4–6 across various altitude bins reaching as high as 6.8 km, with the overall minimum and maximum values being 2.92 and 7.58, respectively (both for the Northeast Pacific). Principal component analysis of species to predict pH shows that the most influential principal component is anthropogenic in nature. Machine leaning modeling suggests that the most effective combination of species to predict pH includes some subset of oxalate, non-sea salt Ca2+, NO3, non-sea salt SO42−, and methanesulfonate. These results demonstrate that cloud water acidity is relatively well constrained between a pH of 4 and 5.5 and that anthropogenic activities impact regional cloud water pH in the areas examined, with dust offsetting acidity at times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信