硝酸盐自由基与香草酸气溶胶的多相反应:动力学和吸光粒子的形成

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Laura-Helena Rivellini, Carolyn Liu-Kang and Jonathan P. D. Abbatt
{"title":"硝酸盐自由基与香草酸气溶胶的多相反应:动力学和吸光粒子的形成","authors":"Laura-Helena Rivellini, Carolyn Liu-Kang and Jonathan P. D. Abbatt","doi":"10.1039/D5EA00066A","DOIUrl":null,"url":null,"abstract":"<p >Given that biomass-burning aerosol emissions have a direct radiative effect on the atmosphere, it is important to understand the chemistry that occurs within wildfire smoke that may change aerosol particle optical properties. To investigate night-time aging chemistry, this laboratory study explores the kinetics of the reaction between gas-phase nitrate radicals (NO<small><sub>3</sub></small>) and vanillic acid (VA), a functionalized phenol. As breakdown products of lignin, phenolic compounds are the commonly observed components of biomass burning smoke. They are also present in urban air pollution, formed by the oxidation of aromatic precursors. The study was conducted in an aerosol flow tube with a residence time of 15 minutes, where roughly 1.6 pptv of NO<small><sub>3</sub></small> was formed by the reaction of NO<small><sub>2</sub></small> (21 ppbv) and O<small><sub>3</sub></small> (230 ppbv), and VA/ammonium sulfate (AS) solutions were atomized to form particles in the accumulation mode size range. The reaction was monitored by an aerosol mass spectrometer (AMS), which measured nitrated aerosol products, and by a 5-wavelength aethalometer, which observed the optical absorption of aerosol particles. The observed gas-surface kinetics are consistent with a NO<small><sub>3</sub></small> reactive uptake coefficient to form a nitrated product of 0.30 ± 0.39 and 0.19 ± 0.12 at respectively RH = 25% ± 5% and 55% ± 5% at 296 K. The aerosol particles became highly absorbing during the reaction in the near ultraviolet (375 nm) and visible (470, 528, and 625 nm) regions. While this change in absorptivity presumably arises <em>via</em> the nitration of the aromatic ring, the reaction drives stronger particle absorption, which extends much more deeply into the visible part of the spectrum than is characteristic of (mono) nitrovanillic acid (NVA), indicative of the formation of complex reaction products. These results demonstrate that night-time atmospheric aging of phenol-containing wildfire smoke and urban particulates will occur rapidly and significantly darken the particles throughout the visible part of the spectrum.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 10","pages":" 1099-1109"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00066a?page=search","citationCount":"0","resultStr":"{\"title\":\"Multiphase reaction of nitrate radicals with vanillic acid aerosols: kinetics and formation of light-absorbing particles\",\"authors\":\"Laura-Helena Rivellini, Carolyn Liu-Kang and Jonathan P. D. Abbatt\",\"doi\":\"10.1039/D5EA00066A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Given that biomass-burning aerosol emissions have a direct radiative effect on the atmosphere, it is important to understand the chemistry that occurs within wildfire smoke that may change aerosol particle optical properties. To investigate night-time aging chemistry, this laboratory study explores the kinetics of the reaction between gas-phase nitrate radicals (NO<small><sub>3</sub></small>) and vanillic acid (VA), a functionalized phenol. As breakdown products of lignin, phenolic compounds are the commonly observed components of biomass burning smoke. They are also present in urban air pollution, formed by the oxidation of aromatic precursors. The study was conducted in an aerosol flow tube with a residence time of 15 minutes, where roughly 1.6 pptv of NO<small><sub>3</sub></small> was formed by the reaction of NO<small><sub>2</sub></small> (21 ppbv) and O<small><sub>3</sub></small> (230 ppbv), and VA/ammonium sulfate (AS) solutions were atomized to form particles in the accumulation mode size range. The reaction was monitored by an aerosol mass spectrometer (AMS), which measured nitrated aerosol products, and by a 5-wavelength aethalometer, which observed the optical absorption of aerosol particles. The observed gas-surface kinetics are consistent with a NO<small><sub>3</sub></small> reactive uptake coefficient to form a nitrated product of 0.30 ± 0.39 and 0.19 ± 0.12 at respectively RH = 25% ± 5% and 55% ± 5% at 296 K. The aerosol particles became highly absorbing during the reaction in the near ultraviolet (375 nm) and visible (470, 528, and 625 nm) regions. While this change in absorptivity presumably arises <em>via</em> the nitration of the aromatic ring, the reaction drives stronger particle absorption, which extends much more deeply into the visible part of the spectrum than is characteristic of (mono) nitrovanillic acid (NVA), indicative of the formation of complex reaction products. These results demonstrate that night-time atmospheric aging of phenol-containing wildfire smoke and urban particulates will occur rapidly and significantly darken the particles throughout the visible part of the spectrum.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 10\",\"pages\":\" 1099-1109\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00066a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00066a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00066a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

鉴于生物质燃烧的气溶胶排放对大气有直接的辐射影响,了解野火烟雾中发生的可能改变气溶胶粒子光学特性的化学物质是很重要的。为了研究夜间老化化学,本实验室研究了气相硝酸盐自由基(NO3)与香草酸(VA)(一种功能化苯酚)之间反应的动力学。酚类化合物是木质素的分解产物,是生物质燃烧烟气中常见的成分。它们也存在于城市空气污染中,由芳香前体氧化形成。研究在气溶胶流管内进行,停留时间为15分钟,其中NO2 (21 ppbv)与O3 (230 ppbv)反应形成约1.6 pptv的NO3, VA/硫酸铵(AS)溶液雾化形成粒径在积累模式范围内的颗粒。该反应通过气溶胶质谱仪(AMS)和5波长乙醇计(aethalometer)进行监测,前者用于测量硝化气溶胶产物,后者用于观察气溶胶颗粒的光学吸收。在296 K条件下,在RH = 25%±5%和55%±5%条件下,NO3反应吸收系数分别为0.30±0.39和0.19±0.12。在反应过程中,气溶胶粒子在近紫外(375 nm)和可见光(470、528和625 nm)区域被高度吸收。虽然这种吸收率的变化可能是由于芳香环的硝化作用引起的,但该反应驱动了更强的颗粒吸收,它比(单)硝基香草酸(NVA)的特征更深入地延伸到光谱的可见部分,表明形成了复杂的反应产物。这些结果表明,含酚野火烟雾和城市颗粒的夜间大气老化将迅速发生,并显着使整个光谱可见部分的颗粒变暗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiphase reaction of nitrate radicals with vanillic acid aerosols: kinetics and formation of light-absorbing particles

Multiphase reaction of nitrate radicals with vanillic acid aerosols: kinetics and formation of light-absorbing particles

Given that biomass-burning aerosol emissions have a direct radiative effect on the atmosphere, it is important to understand the chemistry that occurs within wildfire smoke that may change aerosol particle optical properties. To investigate night-time aging chemistry, this laboratory study explores the kinetics of the reaction between gas-phase nitrate radicals (NO3) and vanillic acid (VA), a functionalized phenol. As breakdown products of lignin, phenolic compounds are the commonly observed components of biomass burning smoke. They are also present in urban air pollution, formed by the oxidation of aromatic precursors. The study was conducted in an aerosol flow tube with a residence time of 15 minutes, where roughly 1.6 pptv of NO3 was formed by the reaction of NO2 (21 ppbv) and O3 (230 ppbv), and VA/ammonium sulfate (AS) solutions were atomized to form particles in the accumulation mode size range. The reaction was monitored by an aerosol mass spectrometer (AMS), which measured nitrated aerosol products, and by a 5-wavelength aethalometer, which observed the optical absorption of aerosol particles. The observed gas-surface kinetics are consistent with a NO3 reactive uptake coefficient to form a nitrated product of 0.30 ± 0.39 and 0.19 ± 0.12 at respectively RH = 25% ± 5% and 55% ± 5% at 296 K. The aerosol particles became highly absorbing during the reaction in the near ultraviolet (375 nm) and visible (470, 528, and 625 nm) regions. While this change in absorptivity presumably arises via the nitration of the aromatic ring, the reaction drives stronger particle absorption, which extends much more deeply into the visible part of the spectrum than is characteristic of (mono) nitrovanillic acid (NVA), indicative of the formation of complex reaction products. These results demonstrate that night-time atmospheric aging of phenol-containing wildfire smoke and urban particulates will occur rapidly and significantly darken the particles throughout the visible part of the spectrum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信