近似dnn中对抗鲁棒性的可解释ai引导神经结构搜索

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Ayesha Siddique;Khaza Anuarul Hoque
{"title":"近似dnn中对抗鲁棒性的可解释ai引导神经结构搜索","authors":"Ayesha Siddique;Khaza Anuarul Hoque","doi":"10.1109/TSUSC.2025.3561603","DOIUrl":null,"url":null,"abstract":"Deep neural networks are lucrative targets of adversarial attacks and approximate deep neural networks (AxDNNs) are no exception. Searching manually for adversarially robust AxDNN architectures incurs outrageous time and human effort. In this paper, we propose XAI-NAS, an explainable neural architecture search (NAS) method that leverages explainable artificial intelligence (XAI) to efficiently co-optimize the adversarial robustness and hardware efficiency of AxDNN architectures on systolic-array hardware accelerators. During the NAS process, AxDNN architectures are evolved layer-wise with heterogeneous approximate multipliers to deliver the best trade-offs between adversarial robustness, energy consumption, latency, and memory footprint. The most suitable approximate multipliers are automatically selected from an open-source Evoapprox8b library. Our extensive evaluations provide a set of Pareto optimal hardware efficient and adversarially robust solutions. For example, a Pareto-optimal DNN AxDNN for the MNIST and CIFAR-10 datasets exhibits up to 1.5× higher adversarial robustness, 2.1× less energy consumption, 4.39× reduced latency, and 2.37× low memory footprint when compared to the state-of-the-art NAS approaches.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 5","pages":"949-964"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable AI-Guided Neural Architecture Search for Adversarial Robustness in Approximate DNNs\",\"authors\":\"Ayesha Siddique;Khaza Anuarul Hoque\",\"doi\":\"10.1109/TSUSC.2025.3561603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks are lucrative targets of adversarial attacks and approximate deep neural networks (AxDNNs) are no exception. Searching manually for adversarially robust AxDNN architectures incurs outrageous time and human effort. In this paper, we propose XAI-NAS, an explainable neural architecture search (NAS) method that leverages explainable artificial intelligence (XAI) to efficiently co-optimize the adversarial robustness and hardware efficiency of AxDNN architectures on systolic-array hardware accelerators. During the NAS process, AxDNN architectures are evolved layer-wise with heterogeneous approximate multipliers to deliver the best trade-offs between adversarial robustness, energy consumption, latency, and memory footprint. The most suitable approximate multipliers are automatically selected from an open-source Evoapprox8b library. Our extensive evaluations provide a set of Pareto optimal hardware efficient and adversarially robust solutions. For example, a Pareto-optimal DNN AxDNN for the MNIST and CIFAR-10 datasets exhibits up to 1.5× higher adversarial robustness, 2.1× less energy consumption, 4.39× reduced latency, and 2.37× low memory footprint when compared to the state-of-the-art NAS approaches.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"10 5\",\"pages\":\"949-964\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10966055/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10966055/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络是对抗性攻击的有利目标,近似深度神经网络(axdnn)也不例外。手动搜索对抗健壮的AxDNN体系结构需要大量的时间和人力。在本文中,我们提出了XAI-NAS,一种可解释神经架构搜索(NAS)方法,利用可解释人工智能(XAI)有效地协同优化收缩阵列硬件加速器上AxDNN架构的对抗鲁棒性和硬件效率。在NAS过程中,AxDNN架构使用异构近似乘数器分层演进,以提供对抗性鲁棒性、能耗、延迟和内存占用之间的最佳权衡。最合适的近似乘数会自动从开源的Evoapprox8b库中选择。我们广泛的评估提供了一套帕累托最优硬件效率和对抗稳健的解决方案。例如,与最先进的NAS方法相比,用于MNIST和CIFAR-10数据集的pareto最优DNN AxDNN显示出高达1.5倍的对抗鲁棒性,2.1倍的能耗,4.39倍的延迟减少和2.37倍的内存占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable AI-Guided Neural Architecture Search for Adversarial Robustness in Approximate DNNs
Deep neural networks are lucrative targets of adversarial attacks and approximate deep neural networks (AxDNNs) are no exception. Searching manually for adversarially robust AxDNN architectures incurs outrageous time and human effort. In this paper, we propose XAI-NAS, an explainable neural architecture search (NAS) method that leverages explainable artificial intelligence (XAI) to efficiently co-optimize the adversarial robustness and hardware efficiency of AxDNN architectures on systolic-array hardware accelerators. During the NAS process, AxDNN architectures are evolved layer-wise with heterogeneous approximate multipliers to deliver the best trade-offs between adversarial robustness, energy consumption, latency, and memory footprint. The most suitable approximate multipliers are automatically selected from an open-source Evoapprox8b library. Our extensive evaluations provide a set of Pareto optimal hardware efficient and adversarially robust solutions. For example, a Pareto-optimal DNN AxDNN for the MNIST and CIFAR-10 datasets exhibits up to 1.5× higher adversarial robustness, 2.1× less energy consumption, 4.39× reduced latency, and 2.37× low memory footprint when compared to the state-of-the-art NAS approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信