Ekaterina Bezverkhniaia*, , , Panagiotis Kanellopoulos, , , Ulrika Rosenström, , , Vladimir Tolmachev, , and , Anna Orlova,
{"title":"巯基螯合剂中负电荷的减少影响锝-99m标记的前列腺特异性膜抗原靶向伪多肽的生物分布","authors":"Ekaterina Bezverkhniaia*, , , Panagiotis Kanellopoulos, , , Ulrika Rosenström, , , Vladimir Tolmachev, , and , Anna Orlova, ","doi":"10.1021/acsptsci.5c00428","DOIUrl":null,"url":null,"abstract":"<p >Prostate cancer (PCa) is the most common cancer and the second leading cause of death among men worldwide. Significant progress has been made in managing PCa by targeting the prostate-specific membrane antigen (PSMA), which holds great promise for improving the accuracy and effectiveness of diagnosis. Previously, we reported a high-affinity glutamate–urea–lysine (EuK)-based PSMA-targeting tracer, BQ0413, containing the maE<sub>3</sub> chelator for labeling with technetium-99m for single-photon emission tomography diagnostic imaging. BQ0413 demonstrated efficient tumor targeting in PCa patients with concomitant elevated activity retention in the kidneys, which is typical for EuK-based PSMA-targeting tracers. We hypothesized that a decrease in the tracer’s total negative charge, by substituting negatively charged glutamate residues in the maE<sub>3</sub> chelator with polar neutral serine, could decrease activity retention in the kidneys. The present study aimed to evaluate the tumor targeting and biodistribution profile of two new PSMA-targeting tracers, BQ0500 (maESE) and BQ0501 (maS<sub>3</sub>), in comparison to BQ0413 (maE<sub>3</sub>). Conjugates were successfully radiolabeled with technetium-99m and characterized in vitro and in vivo. [<sup>99m</sup>Tc]Tc-BQ0500 and [<sup>99m</sup>Tc]Tc-BQ0501 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity; however, the affinity was 3–5-fold compromised in comparison with the reference [<sup>99m</sup>Tc]Tc-BQ0413. Full replacement of glutamate residues by serines in [<sup>99m</sup>Tc]Tc-BQ0501 resulted in an improved overall clearance from normal organs with a moderately increased accumulation of activity in the gastrointestinal tract. [<sup>99m</sup>Tc]Tc-BQ0501 demonstrated efficient tumor targeting and improved tumor-to-background ratios. These results suggest that chelator modifications, such as charge alteration, play a critical role in improving tumor targeting and pharmacokinetics for EuK-based PSMA-targeting tracers.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 10","pages":"3600–3612"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsptsci.5c00428","citationCount":"0","resultStr":"{\"title\":\"Reduction of Negative Charge in Mercaptoacetyl-Based Chelators Influences the Biodistribution of Prostate-Specific Membrane Antigen-Targeting Pseudopeptides Labeled with Technetium-99m\",\"authors\":\"Ekaterina Bezverkhniaia*, , , Panagiotis Kanellopoulos, , , Ulrika Rosenström, , , Vladimir Tolmachev, , and , Anna Orlova, \",\"doi\":\"10.1021/acsptsci.5c00428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Prostate cancer (PCa) is the most common cancer and the second leading cause of death among men worldwide. Significant progress has been made in managing PCa by targeting the prostate-specific membrane antigen (PSMA), which holds great promise for improving the accuracy and effectiveness of diagnosis. Previously, we reported a high-affinity glutamate–urea–lysine (EuK)-based PSMA-targeting tracer, BQ0413, containing the maE<sub>3</sub> chelator for labeling with technetium-99m for single-photon emission tomography diagnostic imaging. BQ0413 demonstrated efficient tumor targeting in PCa patients with concomitant elevated activity retention in the kidneys, which is typical for EuK-based PSMA-targeting tracers. We hypothesized that a decrease in the tracer’s total negative charge, by substituting negatively charged glutamate residues in the maE<sub>3</sub> chelator with polar neutral serine, could decrease activity retention in the kidneys. The present study aimed to evaluate the tumor targeting and biodistribution profile of two new PSMA-targeting tracers, BQ0500 (maESE) and BQ0501 (maS<sub>3</sub>), in comparison to BQ0413 (maE<sub>3</sub>). Conjugates were successfully radiolabeled with technetium-99m and characterized in vitro and in vivo. [<sup>99m</sup>Tc]Tc-BQ0500 and [<sup>99m</sup>Tc]Tc-BQ0501 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity; however, the affinity was 3–5-fold compromised in comparison with the reference [<sup>99m</sup>Tc]Tc-BQ0413. Full replacement of glutamate residues by serines in [<sup>99m</sup>Tc]Tc-BQ0501 resulted in an improved overall clearance from normal organs with a moderately increased accumulation of activity in the gastrointestinal tract. [<sup>99m</sup>Tc]Tc-BQ0501 demonstrated efficient tumor targeting and improved tumor-to-background ratios. These results suggest that chelator modifications, such as charge alteration, play a critical role in improving tumor targeting and pharmacokinetics for EuK-based PSMA-targeting tracers.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 10\",\"pages\":\"3600–3612\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsptsci.5c00428\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.5c00428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.5c00428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Reduction of Negative Charge in Mercaptoacetyl-Based Chelators Influences the Biodistribution of Prostate-Specific Membrane Antigen-Targeting Pseudopeptides Labeled with Technetium-99m
Prostate cancer (PCa) is the most common cancer and the second leading cause of death among men worldwide. Significant progress has been made in managing PCa by targeting the prostate-specific membrane antigen (PSMA), which holds great promise for improving the accuracy and effectiveness of diagnosis. Previously, we reported a high-affinity glutamate–urea–lysine (EuK)-based PSMA-targeting tracer, BQ0413, containing the maE3 chelator for labeling with technetium-99m for single-photon emission tomography diagnostic imaging. BQ0413 demonstrated efficient tumor targeting in PCa patients with concomitant elevated activity retention in the kidneys, which is typical for EuK-based PSMA-targeting tracers. We hypothesized that a decrease in the tracer’s total negative charge, by substituting negatively charged glutamate residues in the maE3 chelator with polar neutral serine, could decrease activity retention in the kidneys. The present study aimed to evaluate the tumor targeting and biodistribution profile of two new PSMA-targeting tracers, BQ0500 (maESE) and BQ0501 (maS3), in comparison to BQ0413 (maE3). Conjugates were successfully radiolabeled with technetium-99m and characterized in vitro and in vivo. [99mTc]Tc-BQ0500 and [99mTc]Tc-BQ0501 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity; however, the affinity was 3–5-fold compromised in comparison with the reference [99mTc]Tc-BQ0413. Full replacement of glutamate residues by serines in [99mTc]Tc-BQ0501 resulted in an improved overall clearance from normal organs with a moderately increased accumulation of activity in the gastrointestinal tract. [99mTc]Tc-BQ0501 demonstrated efficient tumor targeting and improved tumor-to-background ratios. These results suggest that chelator modifications, such as charge alteration, play a critical role in improving tumor targeting and pharmacokinetics for EuK-based PSMA-targeting tracers.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.