David Fineberg, , , Alain Moreau, , , Elena K. Schneider-Futschik*, , and , Christopher W. Armstrong*,
{"title":"二甲双胍治疗肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)和长COVID的研究进展","authors":"David Fineberg, , , Alain Moreau, , , Elena K. Schneider-Futschik*, , and , Christopher W. Armstrong*, ","doi":"10.1021/acsptsci.5c00229","DOIUrl":null,"url":null,"abstract":"<p >Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID (LC) are increasingly recognized as debilitating postinfectious conditions that impact both individuals and society. Recent research highlights the potential of metformin, an antidiabetic agent, as a treatment for these syndromes by targeting their underlying mechanisms. This review assesses the effectiveness of metformin in ME/CFS and LC, which involve complex dysfunctions related to cytokines, glycolysis, ATP generation, oxidative stress, gastrointestinal microbiomes, and vascular endothelial function. Metformin, traditionally known for its antihyperglycemic properties may offer broader therapeutic benefits by influencing these pathological pathways. It works by inhibiting complexes I and IV of the electron transport chain, which reduces the strain on malfunctioning complex V and decreases the production of harmful free radicals. Additionally, metformin’s impact on mTOR signaling could improve energy metabolism in ME/CFS and LC by downregulating an overactive but underperforming protein, thereby alleviating symptoms. Beyond the impact on cellular metabolism, metformin has shown to have anti-inflammatory, vascular, gastrointestinal, neuroprotective and epigenetic effects. We explore this impact of metformin and the potential role it could play to help people with ME/CFS. While metformin shows promise, it is unlikely to be a stand-alone solution. Instead, it may be part of a broader treatment strategy that includes other therapies targeting neurocognitive and autonomic impairments.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 10","pages":"3411–3431"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Perspective on the Role of Metformin in Treating Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID\",\"authors\":\"David Fineberg, , , Alain Moreau, , , Elena K. Schneider-Futschik*, , and , Christopher W. Armstrong*, \",\"doi\":\"10.1021/acsptsci.5c00229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID (LC) are increasingly recognized as debilitating postinfectious conditions that impact both individuals and society. Recent research highlights the potential of metformin, an antidiabetic agent, as a treatment for these syndromes by targeting their underlying mechanisms. This review assesses the effectiveness of metformin in ME/CFS and LC, which involve complex dysfunctions related to cytokines, glycolysis, ATP generation, oxidative stress, gastrointestinal microbiomes, and vascular endothelial function. Metformin, traditionally known for its antihyperglycemic properties may offer broader therapeutic benefits by influencing these pathological pathways. It works by inhibiting complexes I and IV of the electron transport chain, which reduces the strain on malfunctioning complex V and decreases the production of harmful free radicals. Additionally, metformin’s impact on mTOR signaling could improve energy metabolism in ME/CFS and LC by downregulating an overactive but underperforming protein, thereby alleviating symptoms. Beyond the impact on cellular metabolism, metformin has shown to have anti-inflammatory, vascular, gastrointestinal, neuroprotective and epigenetic effects. We explore this impact of metformin and the potential role it could play to help people with ME/CFS. While metformin shows promise, it is unlikely to be a stand-alone solution. Instead, it may be part of a broader treatment strategy that includes other therapies targeting neurocognitive and autonomic impairments.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 10\",\"pages\":\"3411–3431\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.5c00229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.5c00229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
A Perspective on the Role of Metformin in Treating Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long COVID
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID (LC) are increasingly recognized as debilitating postinfectious conditions that impact both individuals and society. Recent research highlights the potential of metformin, an antidiabetic agent, as a treatment for these syndromes by targeting their underlying mechanisms. This review assesses the effectiveness of metformin in ME/CFS and LC, which involve complex dysfunctions related to cytokines, glycolysis, ATP generation, oxidative stress, gastrointestinal microbiomes, and vascular endothelial function. Metformin, traditionally known for its antihyperglycemic properties may offer broader therapeutic benefits by influencing these pathological pathways. It works by inhibiting complexes I and IV of the electron transport chain, which reduces the strain on malfunctioning complex V and decreases the production of harmful free radicals. Additionally, metformin’s impact on mTOR signaling could improve energy metabolism in ME/CFS and LC by downregulating an overactive but underperforming protein, thereby alleviating symptoms. Beyond the impact on cellular metabolism, metformin has shown to have anti-inflammatory, vascular, gastrointestinal, neuroprotective and epigenetic effects. We explore this impact of metformin and the potential role it could play to help people with ME/CFS. While metformin shows promise, it is unlikely to be a stand-alone solution. Instead, it may be part of a broader treatment strategy that includes other therapies targeting neurocognitive and autonomic impairments.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.