采用非谐振步长对高振荡非线性狄拉克方程进行时间积分

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Tobias Jahnke, Michael Kirn
{"title":"采用非谐振步长对高振荡非线性狄拉克方程进行时间积分","authors":"Tobias Jahnke, Michael Kirn","doi":"10.1093/imanum/draf085","DOIUrl":null,"url":null,"abstract":"In the nonrelativistic limit regime, nonlinear Dirac equations involve a small parameter $\\varepsilon>0$ which induces rapid temporal oscillations with frequency proportional to $\\varepsilon ^{-2}$. Efficient time integrators are challenging to construct, since their accuracy has to be independent of $\\varepsilon $ or improve with smaller values of $\\varepsilon $. Yongyong Cai and Yan Wang have presented a nested Picard iterative integrator (NPI-2), which is a uniformly accurate second-order scheme. We propose a novel method called the nonresonant nested Picard iterative integrator (NRNPI), which takes advantage of cancelation effects in the global error to significantly simplify the NPI-2. We prove that for nonresonant step sizes $\\tau \\geq \\frac{\\pi }{4} \\varepsilon ^{2}$, the NRNPI has the same accuracy as the NPI-2 and is thus more efficient. Moreover, we show that for arbitrary $\\tau < \\frac{\\pi }{4} \\varepsilon ^{2}$, the error decreases proportionally to $\\varepsilon ^{2} \\tau $. We provide numerical experiments to illustrate the error behavior as well as the efficiency gain.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"15 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing nonresonant step sizes for time integration of highly oscillatory nonlinear Dirac equations\",\"authors\":\"Tobias Jahnke, Michael Kirn\",\"doi\":\"10.1093/imanum/draf085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the nonrelativistic limit regime, nonlinear Dirac equations involve a small parameter $\\\\varepsilon>0$ which induces rapid temporal oscillations with frequency proportional to $\\\\varepsilon ^{-2}$. Efficient time integrators are challenging to construct, since their accuracy has to be independent of $\\\\varepsilon $ or improve with smaller values of $\\\\varepsilon $. Yongyong Cai and Yan Wang have presented a nested Picard iterative integrator (NPI-2), which is a uniformly accurate second-order scheme. We propose a novel method called the nonresonant nested Picard iterative integrator (NRNPI), which takes advantage of cancelation effects in the global error to significantly simplify the NPI-2. We prove that for nonresonant step sizes $\\\\tau \\\\geq \\\\frac{\\\\pi }{4} \\\\varepsilon ^{2}$, the NRNPI has the same accuracy as the NPI-2 and is thus more efficient. Moreover, we show that for arbitrary $\\\\tau < \\\\frac{\\\\pi }{4} \\\\varepsilon ^{2}$, the error decreases proportionally to $\\\\varepsilon ^{2} \\\\tau $. We provide numerical experiments to illustrate the error behavior as well as the efficiency gain.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf085\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf085","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在非相对论极限状态下,非线性狄拉克方程涉及一个小参数$\varepsilon>0$,该参数引起频率与$\varepsilon ^{-2}$成正比的快速时间振荡。构建高效的时间积分器具有挑战性,因为它们的精度必须与$\varepsilon $无关,或者随着$\varepsilon $的较小值而提高。蔡永勇和王岩提出了一种一致精确二阶格式的嵌套Picard迭代积分器(NPI-2)。本文提出了一种新的非共振嵌套皮卡德迭代积分器(NRNPI)方法,该方法利用了全局误差的抵消效应,大大简化了NPI-2。我们证明了对于非谐振步长$\tau \geq \frac{\pi }{4} \varepsilon ^{2}$, NRNPI具有与NPI-2相同的精度,因此效率更高。此外,我们表明,对于任意$\tau < \frac{\pi }{4} \varepsilon ^{2}$,误差成比例地减小到$\varepsilon ^{2} \tau $。我们提供了数值实验来说明误差行为和效率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Employing nonresonant step sizes for time integration of highly oscillatory nonlinear Dirac equations
In the nonrelativistic limit regime, nonlinear Dirac equations involve a small parameter $\varepsilon>0$ which induces rapid temporal oscillations with frequency proportional to $\varepsilon ^{-2}$. Efficient time integrators are challenging to construct, since their accuracy has to be independent of $\varepsilon $ or improve with smaller values of $\varepsilon $. Yongyong Cai and Yan Wang have presented a nested Picard iterative integrator (NPI-2), which is a uniformly accurate second-order scheme. We propose a novel method called the nonresonant nested Picard iterative integrator (NRNPI), which takes advantage of cancelation effects in the global error to significantly simplify the NPI-2. We prove that for nonresonant step sizes $\tau \geq \frac{\pi }{4} \varepsilon ^{2}$, the NRNPI has the same accuracy as the NPI-2 and is thus more efficient. Moreover, we show that for arbitrary $\tau < \frac{\pi }{4} \varepsilon ^{2}$, the error decreases proportionally to $\varepsilon ^{2} \tau $. We provide numerical experiments to illustrate the error behavior as well as the efficiency gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信