Jingyi Xu, Xiaodong Chen, Jianrong Ren, Jiawen Xu, Lei Zhang, Fang Yan, Tao Liu, Guijie Zhang, Sharon A. Huws, Junhu Yao, Shengru Wu
{"title":"微生物组-瘤胃上皮相互作用机制在奶山羊亚急性瘤胃酸中毒耐受中的多组学研究","authors":"Jingyi Xu, Xiaodong Chen, Jianrong Ren, Jiawen Xu, Lei Zhang, Fang Yan, Tao Liu, Guijie Zhang, Sharon A. Huws, Junhu Yao, Shengru Wu","doi":"10.1186/s13059-025-03789-y","DOIUrl":null,"url":null,"abstract":"To address rising demand for dairy products, dairy goats are often fed high-concentrate diets, which lead to subacute rumen acidosis (SARA). The mechanisms behind individual variation in SARA tolerance are not well understood. This study aims to elucidate roles of rumen microbiome-host interactions in SARA-susceptibility and tolerance. Goats susceptible or tolerant to SARA were selected by feeding diets with different levels of rumen degradable starch. SARA-susceptible goats present prolonged periods of rumen pH below 5.8 and volatile fatty acids (VFAs) accumulation. Metagenomic analysis reveals a decrease in cellulose- and hemicellulose-utilizing bacteria and enzymes, along with increased lysozymes, suggesting disrupted rumen homeostasis. Transcriptomic and single-nucleus transcriptome analyses reveal upregulated Th17 cells, IL-17 signalling, and inflammatory pathways in SARA-susceptible goats. In contrast, SARA-tolerant goats maintain stable pH levels and enhance VFAs absorption. Bifidobacterium adolescentis and other beneficial bacteria are enriched in the rumen of SARA-tolerant goats. These microbes are positively correlated with 3-methyl pyruvic acid, a key metabolite involved in branched-chain amino acid synthesis and epithelial cell proliferation. Both microbiome transplantation and B. adolescentis direct feeding experiments confirm the protective effects of SARA-tolerant microbiota including B. adolescentis, promoting rumen epithelial VFAs absorption and reducing ruminal inflammation. This study highlights the importance of Th17-mediated immune responses in ruminal inflammation and the role of B. adolescentis in regulating rumen epithelial VFAs absorption. Modulating VFAs absorption in the rumen epithelium represents a promising strategy for improving animal health and enhancing rumen fermentation efficiency.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"109 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics insights into microbiome-rumen epithelium interaction mechanisms underlying subacute rumen acidosis tolerance in dairy goats\",\"authors\":\"Jingyi Xu, Xiaodong Chen, Jianrong Ren, Jiawen Xu, Lei Zhang, Fang Yan, Tao Liu, Guijie Zhang, Sharon A. Huws, Junhu Yao, Shengru Wu\",\"doi\":\"10.1186/s13059-025-03789-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address rising demand for dairy products, dairy goats are often fed high-concentrate diets, which lead to subacute rumen acidosis (SARA). The mechanisms behind individual variation in SARA tolerance are not well understood. This study aims to elucidate roles of rumen microbiome-host interactions in SARA-susceptibility and tolerance. Goats susceptible or tolerant to SARA were selected by feeding diets with different levels of rumen degradable starch. SARA-susceptible goats present prolonged periods of rumen pH below 5.8 and volatile fatty acids (VFAs) accumulation. Metagenomic analysis reveals a decrease in cellulose- and hemicellulose-utilizing bacteria and enzymes, along with increased lysozymes, suggesting disrupted rumen homeostasis. Transcriptomic and single-nucleus transcriptome analyses reveal upregulated Th17 cells, IL-17 signalling, and inflammatory pathways in SARA-susceptible goats. In contrast, SARA-tolerant goats maintain stable pH levels and enhance VFAs absorption. Bifidobacterium adolescentis and other beneficial bacteria are enriched in the rumen of SARA-tolerant goats. These microbes are positively correlated with 3-methyl pyruvic acid, a key metabolite involved in branched-chain amino acid synthesis and epithelial cell proliferation. Both microbiome transplantation and B. adolescentis direct feeding experiments confirm the protective effects of SARA-tolerant microbiota including B. adolescentis, promoting rumen epithelial VFAs absorption and reducing ruminal inflammation. This study highlights the importance of Th17-mediated immune responses in ruminal inflammation and the role of B. adolescentis in regulating rumen epithelial VFAs absorption. Modulating VFAs absorption in the rumen epithelium represents a promising strategy for improving animal health and enhancing rumen fermentation efficiency.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03789-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03789-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multi-omics insights into microbiome-rumen epithelium interaction mechanisms underlying subacute rumen acidosis tolerance in dairy goats
To address rising demand for dairy products, dairy goats are often fed high-concentrate diets, which lead to subacute rumen acidosis (SARA). The mechanisms behind individual variation in SARA tolerance are not well understood. This study aims to elucidate roles of rumen microbiome-host interactions in SARA-susceptibility and tolerance. Goats susceptible or tolerant to SARA were selected by feeding diets with different levels of rumen degradable starch. SARA-susceptible goats present prolonged periods of rumen pH below 5.8 and volatile fatty acids (VFAs) accumulation. Metagenomic analysis reveals a decrease in cellulose- and hemicellulose-utilizing bacteria and enzymes, along with increased lysozymes, suggesting disrupted rumen homeostasis. Transcriptomic and single-nucleus transcriptome analyses reveal upregulated Th17 cells, IL-17 signalling, and inflammatory pathways in SARA-susceptible goats. In contrast, SARA-tolerant goats maintain stable pH levels and enhance VFAs absorption. Bifidobacterium adolescentis and other beneficial bacteria are enriched in the rumen of SARA-tolerant goats. These microbes are positively correlated with 3-methyl pyruvic acid, a key metabolite involved in branched-chain amino acid synthesis and epithelial cell proliferation. Both microbiome transplantation and B. adolescentis direct feeding experiments confirm the protective effects of SARA-tolerant microbiota including B. adolescentis, promoting rumen epithelial VFAs absorption and reducing ruminal inflammation. This study highlights the importance of Th17-mediated immune responses in ruminal inflammation and the role of B. adolescentis in regulating rumen epithelial VFAs absorption. Modulating VFAs absorption in the rumen epithelium represents a promising strategy for improving animal health and enhancing rumen fermentation efficiency.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.