MosGraphFlow:一种从多组数据中挖掘信号目标的新型集成图形AI模型。

BMC methods Pub Date : 2025-01-01 Epub Date: 2025-10-06 DOI:10.1186/s44330-025-00041-8
Heming Zhang, Dekang Cao, Tim Xu, Emily Chen, Guangfu Li, Yixin Chen, Philip Payne, Michael Province, Fuhai Li
{"title":"MosGraphFlow:一种从多组数据中挖掘信号目标的新型集成图形AI模型。","authors":"Heming Zhang, Dekang Cao, Tim Xu, Emily Chen, Guangfu Li, Yixin Chen, Philip Payne, Michael Province, Fuhai Li","doi":"10.1186/s44330-025-00041-8","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-omic dataset can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of Alzheimers' Disease (AD), and 3) developed a visualization tool to facilitate the visualization of identified disease associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. In the visualization, the signaling sources are highlighted at specific omic levels to facilitate the understanding of disease pathogenesis. The proposed model can also be applied and expanded for other multi-omic data-driven studies. The code of the model is publicly accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s44330-025-00041-8.</p>","PeriodicalId":519945,"journal":{"name":"BMC methods","volume":"2 1","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497674/pdf/","citationCount":"0","resultStr":"{\"title\":\"MosGraphFlow: a novel integrative graph AI model mining signaling targets from multi-omic data.\",\"authors\":\"Heming Zhang, Dekang Cao, Tim Xu, Emily Chen, Guangfu Li, Yixin Chen, Philip Payne, Michael Province, Fuhai Li\",\"doi\":\"10.1186/s44330-025-00041-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-omic dataset can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of Alzheimers' Disease (AD), and 3) developed a visualization tool to facilitate the visualization of identified disease associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. In the visualization, the signaling sources are highlighted at specific omic levels to facilitate the understanding of disease pathogenesis. The proposed model can also be applied and expanded for other multi-omic data-driven studies. The code of the model is publicly accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s44330-025-00041-8.</p>\",\"PeriodicalId\":519945,\"journal\":{\"name\":\"BMC methods\",\"volume\":\"2 1\",\"pages\":\"23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s44330-025-00041-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44330-025-00041-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与单个基因组数据相比,多基因组数据集可以从多个角度更好地表征复杂的细胞信号通路。然而,综合多组学数据分析对关键疾病生物标志物进行排序并推断核心信号通路仍然是一个悬而未决的问题。在这项研究中,我们开发了一个新的图形AI模型,mosGraphFlow,用于分析多组信号图(mosGraphs), 2)分析了阿尔茨海默病(AD)的多组mosGraph数据集,3)开发了一个可视化工具,以促进已识别疾病相关信号生物标志物和网络的可视化。对比结果表明,该模型不仅达到了最佳的分类精度,而且能够识别出重要的AD疾病生物标志物和信号相互作用。在可视化中,在特定的组学水平上突出显示信号来源,以促进对疾病发病机制的理解。该模型也可以应用于其他多组学数据驱动的研究。该模型的代码可通过GitHub公开访问:https://github.com/FuhaiLiAiLab/mosGraphFlow.Supplementary信息:在线版本包含补充材料,可在10.1186/s44330-025-00041-8获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MosGraphFlow: a novel integrative graph AI model mining signaling targets from multi-omic data.

Multi-omic dataset can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of Alzheimers' Disease (AD), and 3) developed a visualization tool to facilitate the visualization of identified disease associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. In the visualization, the signaling sources are highlighted at specific omic levels to facilitate the understanding of disease pathogenesis. The proposed model can also be applied and expanded for other multi-omic data-driven studies. The code of the model is publicly accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.

Supplementary information: The online version contains supplementary material available at 10.1186/s44330-025-00041-8.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信