MRAnnotator:对44个结构进行多解剖和多序列MRI分割。

Radiology advances Pub Date : 2024-12-17 eCollection Date: 2025-01-01 DOI:10.1093/radadv/umae035
Alexander Zhou, Zelong Liu, Andrew Tieu, Nikhil Patel, Sean Sun, Anthony Yang, Peter Choi, Hao-Chih Lee, Mickael Tordjman, Louisa Deyer, Yunhao Mei, Valentin Fauveau, Georgios Soultanidis, Bachir Taouli, Mingqian Huang, Amish Doshi, Zahi A Fayad, Timothy Deyer, Xueyan Mei
{"title":"MRAnnotator:对44个结构进行多解剖和多序列MRI分割。","authors":"Alexander Zhou, Zelong Liu, Andrew Tieu, Nikhil Patel, Sean Sun, Anthony Yang, Peter Choi, Hao-Chih Lee, Mickael Tordjman, Louisa Deyer, Yunhao Mei, Valentin Fauveau, Georgios Soultanidis, Bachir Taouli, Mingqian Huang, Amish Doshi, Zahi A Fayad, Timothy Deyer, Xueyan Mei","doi":"10.1093/radadv/umae035","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a deep learning model for multi-anatomy segmentation of diverse anatomic structures on MRI.</p><p><strong>Materials and methods: </strong>In this retrospective study, 44 structures were annotated using a model-assisted workflow with manual human finalization in 2 curated datasets: an internal dataset of 1518 MRI sequences (843 patients) from various clinical sites within a health system, and an external dataset of 397 MRI sequences (263 patients) from an independent imaging center for benchmarking. The internal dataset was used to train an nnU-Net model (MRAnnotator), while the external dataset evaluated MRAnnotator's generalizability across significant image acquisition distribution shifts. MRAnnotator was further benchmarked against an nnU-Net model trained on the AMOS dataset and 2 current multi-anatomy MRI segmentation models, TotalSegmentator MRI (TSM) and MRSegmentator (MRS). Performance throughout was quantified using the Dice score.</p><p><strong>Results: </strong>MRAnnotator achieved an overall average Dice score of 0.878 (95% CI: 0.873, 0.884) on the internal dataset test set and 0.875 (95% CI: 0.869, 0.880) on the external dataset benchmark, demonstrating strong generalization (<i>P</i> = .899). On the AMOS test set, MRAnnotator achieved comparable performance for relevant classes (0.889 [0.866, 0.909]) to an AMOS-trained nnU-Net (0.895 [0.871, 0.915]) (<i>P</i> = .361) and outperformed TSM (0.822 [0.800, 0.842], <i>P</i> < .001) and MRS (0.867 [0.844, 0.887], <i>P</i> < .001). TSM and MRS were also evaluated on the relevant classes from the internal and external datasets and were unable to achieve comparable performance to MRAnnotator.</p><p><strong>Conclusion: </strong>MRAnnotator achieves robust and generalizable MRI segmentation across 44 anatomic structures. Future direction will incorporate additional anatomic structures into the datasets and model. Model weights are publicly available on GitHub. The external test set with annotations is available upon request.</p>","PeriodicalId":519940,"journal":{"name":"Radiology advances","volume":"2 1","pages":"umae035"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429175/pdf/","citationCount":"0","resultStr":"{\"title\":\"MRAnnotator: multi-anatomy and many-sequence MRI segmentation of 44 structures.\",\"authors\":\"Alexander Zhou, Zelong Liu, Andrew Tieu, Nikhil Patel, Sean Sun, Anthony Yang, Peter Choi, Hao-Chih Lee, Mickael Tordjman, Louisa Deyer, Yunhao Mei, Valentin Fauveau, Georgios Soultanidis, Bachir Taouli, Mingqian Huang, Amish Doshi, Zahi A Fayad, Timothy Deyer, Xueyan Mei\",\"doi\":\"10.1093/radadv/umae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop a deep learning model for multi-anatomy segmentation of diverse anatomic structures on MRI.</p><p><strong>Materials and methods: </strong>In this retrospective study, 44 structures were annotated using a model-assisted workflow with manual human finalization in 2 curated datasets: an internal dataset of 1518 MRI sequences (843 patients) from various clinical sites within a health system, and an external dataset of 397 MRI sequences (263 patients) from an independent imaging center for benchmarking. The internal dataset was used to train an nnU-Net model (MRAnnotator), while the external dataset evaluated MRAnnotator's generalizability across significant image acquisition distribution shifts. MRAnnotator was further benchmarked against an nnU-Net model trained on the AMOS dataset and 2 current multi-anatomy MRI segmentation models, TotalSegmentator MRI (TSM) and MRSegmentator (MRS). Performance throughout was quantified using the Dice score.</p><p><strong>Results: </strong>MRAnnotator achieved an overall average Dice score of 0.878 (95% CI: 0.873, 0.884) on the internal dataset test set and 0.875 (95% CI: 0.869, 0.880) on the external dataset benchmark, demonstrating strong generalization (<i>P</i> = .899). On the AMOS test set, MRAnnotator achieved comparable performance for relevant classes (0.889 [0.866, 0.909]) to an AMOS-trained nnU-Net (0.895 [0.871, 0.915]) (<i>P</i> = .361) and outperformed TSM (0.822 [0.800, 0.842], <i>P</i> < .001) and MRS (0.867 [0.844, 0.887], <i>P</i> < .001). TSM and MRS were also evaluated on the relevant classes from the internal and external datasets and were unable to achieve comparable performance to MRAnnotator.</p><p><strong>Conclusion: </strong>MRAnnotator achieves robust and generalizable MRI segmentation across 44 anatomic structures. Future direction will incorporate additional anatomic structures into the datasets and model. Model weights are publicly available on GitHub. The external test set with annotations is available upon request.</p>\",\"PeriodicalId\":519940,\"journal\":{\"name\":\"Radiology advances\",\"volume\":\"2 1\",\"pages\":\"umae035\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/radadv/umae035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/radadv/umae035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:建立一种深度学习模型,用于MRI上不同解剖结构的多解剖分割。材料和方法:在这项回顾性研究中,使用模型辅助工作流对2个精选数据集中的44个结构进行了注释:一个是来自卫生系统内各个临床站点的1518个MRI序列(843名患者)的内部数据集,另一个是来自独立成像中心的397个MRI序列(263名患者)的外部数据集,用于基准测试。内部数据集用于训练nnU-Net模型(MRAnnotator),而外部数据集评估MRAnnotator在显著图像采集分布转移中的泛化性。MRAnnotator进一步与基于AMOS数据集训练的nnU-Net模型和两种当前的多解剖MRI分割模型(TotalSegmentator MRI (TSM)和MRSegmentator (MRS))进行基准测试。整个过程的表现使用Dice分数进行量化。结果:MRAnnotator在内部数据集测试集上的总体平均Dice得分为0.878 (95% CI: 0.873, 0.884),在外部数据集基准测试集上的总体平均Dice得分为0.875 (95% CI: 0.869, 0.880),显示出较强的泛化(P = 0.899)。在AMOS测试集上,MRAnnotator在相关类上的表现(0.889[0.866,0.909])与AMOS训练的nnU-Net (0.895 [0.871, 0.915]) (P = .361)相当,优于TSM(0.822[0.800, 0.842])。未来的方向是将更多的解剖结构纳入数据集和模型。模型权重在GitHub上是公开的。带有注释的外部测试集可根据要求提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MRAnnotator: multi-anatomy and many-sequence MRI segmentation of 44 structures.

MRAnnotator: multi-anatomy and many-sequence MRI segmentation of 44 structures.

MRAnnotator: multi-anatomy and many-sequence MRI segmentation of 44 structures.

MRAnnotator: multi-anatomy and many-sequence MRI segmentation of 44 structures.

Purpose: To develop a deep learning model for multi-anatomy segmentation of diverse anatomic structures on MRI.

Materials and methods: In this retrospective study, 44 structures were annotated using a model-assisted workflow with manual human finalization in 2 curated datasets: an internal dataset of 1518 MRI sequences (843 patients) from various clinical sites within a health system, and an external dataset of 397 MRI sequences (263 patients) from an independent imaging center for benchmarking. The internal dataset was used to train an nnU-Net model (MRAnnotator), while the external dataset evaluated MRAnnotator's generalizability across significant image acquisition distribution shifts. MRAnnotator was further benchmarked against an nnU-Net model trained on the AMOS dataset and 2 current multi-anatomy MRI segmentation models, TotalSegmentator MRI (TSM) and MRSegmentator (MRS). Performance throughout was quantified using the Dice score.

Results: MRAnnotator achieved an overall average Dice score of 0.878 (95% CI: 0.873, 0.884) on the internal dataset test set and 0.875 (95% CI: 0.869, 0.880) on the external dataset benchmark, demonstrating strong generalization (P = .899). On the AMOS test set, MRAnnotator achieved comparable performance for relevant classes (0.889 [0.866, 0.909]) to an AMOS-trained nnU-Net (0.895 [0.871, 0.915]) (P = .361) and outperformed TSM (0.822 [0.800, 0.842], P < .001) and MRS (0.867 [0.844, 0.887], P < .001). TSM and MRS were also evaluated on the relevant classes from the internal and external datasets and were unable to achieve comparable performance to MRAnnotator.

Conclusion: MRAnnotator achieves robust and generalizable MRI segmentation across 44 anatomic structures. Future direction will incorporate additional anatomic structures into the datasets and model. Model weights are publicly available on GitHub. The external test set with annotations is available upon request.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信