Riel Castro-Zunti, Yunjung Choi, Younhee Choi, Hee Suk Chae, Gong Yong Jin, Eun Hae Park, Seok-Bum Ko
{"title":"DECTGoutSys:通过双能计算机断层扫描(DECT)中晶体Tophi识别和分类的机器视觉管道减少假阳性痛风诊断。","authors":"Riel Castro-Zunti, Yunjung Choi, Younhee Choi, Hee Suk Chae, Gong Yong Jin, Eun Hae Park, Seok-Bum Ko","doi":"10.1007/s10278-025-01703-3","DOIUrl":null,"url":null,"abstract":"<p><p>Gout is the world's foremost chronic inflammatory arthritis. Dual-energy computed tomography (DECT) images tophi-monosodium urate (MSU) crystal deposits that indicate gout-as an easily recognizable green color, facilitating high sensitivity. However, tophi-like regions (\"artifacts\") may be found in healthy controls, degrading specificity. To mitigate false positives, we propose the first automated system to localize MSU-presenting crystal deposits from DECT and classify them as gouty tophi or artifacts. Our solution, developed using 47 gout and 27 control patient scans, is three-stage. First, a computer vision algorithm crops green regions of interest (RoIs) from a patient's DECT scan frames and filters obvious false positives. Next, extracted RoIs are classified as tophi or artifact via one of three fine-tuned deep learning models; one model is trained to predict \"small\" RoIs, another \"medium,\" and the third predicts \"large\" RoIs. Size thresholds are based on pixel area quartile statistics. Patient-level gout versus control classification is made via a machine learning system trained using a suite of features calculated from the outcomes of the RoI classifiers. Using 6-fold cross-validation, the proposed pipeline achieved a patient-level diagnostic accuracy, sensitivity, and specificity of 91.89%, 87.23%, and 100.00%. Using confidence values derived from the majority vote of RoI predictions, the best area under the receiver operator characteristics curve (ROC AUC) is 97.16%. The best RoI-level classifiers achieved mean tophus versus artifact accuracy, sensitivity, specificity, and ROC AUC of 89.61%, 85.42%, 93.70%, and 92.72%. Results demonstrate that machine/deep learning facilitates high-specificity gout diagnoses while maintaining respectable sensitivity.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DECTGoutSys: Reducing False Positive Gout Diagnoses via a Machine Vision Pipeline for Crystal Tophi Identification+Classification in Dual-Energy Computed Tomography (DECT).\",\"authors\":\"Riel Castro-Zunti, Yunjung Choi, Younhee Choi, Hee Suk Chae, Gong Yong Jin, Eun Hae Park, Seok-Bum Ko\",\"doi\":\"10.1007/s10278-025-01703-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gout is the world's foremost chronic inflammatory arthritis. Dual-energy computed tomography (DECT) images tophi-monosodium urate (MSU) crystal deposits that indicate gout-as an easily recognizable green color, facilitating high sensitivity. However, tophi-like regions (\\\"artifacts\\\") may be found in healthy controls, degrading specificity. To mitigate false positives, we propose the first automated system to localize MSU-presenting crystal deposits from DECT and classify them as gouty tophi or artifacts. Our solution, developed using 47 gout and 27 control patient scans, is three-stage. First, a computer vision algorithm crops green regions of interest (RoIs) from a patient's DECT scan frames and filters obvious false positives. Next, extracted RoIs are classified as tophi or artifact via one of three fine-tuned deep learning models; one model is trained to predict \\\"small\\\" RoIs, another \\\"medium,\\\" and the third predicts \\\"large\\\" RoIs. Size thresholds are based on pixel area quartile statistics. Patient-level gout versus control classification is made via a machine learning system trained using a suite of features calculated from the outcomes of the RoI classifiers. Using 6-fold cross-validation, the proposed pipeline achieved a patient-level diagnostic accuracy, sensitivity, and specificity of 91.89%, 87.23%, and 100.00%. Using confidence values derived from the majority vote of RoI predictions, the best area under the receiver operator characteristics curve (ROC AUC) is 97.16%. The best RoI-level classifiers achieved mean tophus versus artifact accuracy, sensitivity, specificity, and ROC AUC of 89.61%, 85.42%, 93.70%, and 92.72%. Results demonstrate that machine/deep learning facilitates high-specificity gout diagnoses while maintaining respectable sensitivity.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01703-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01703-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DECTGoutSys: Reducing False Positive Gout Diagnoses via a Machine Vision Pipeline for Crystal Tophi Identification+Classification in Dual-Energy Computed Tomography (DECT).
Gout is the world's foremost chronic inflammatory arthritis. Dual-energy computed tomography (DECT) images tophi-monosodium urate (MSU) crystal deposits that indicate gout-as an easily recognizable green color, facilitating high sensitivity. However, tophi-like regions ("artifacts") may be found in healthy controls, degrading specificity. To mitigate false positives, we propose the first automated system to localize MSU-presenting crystal deposits from DECT and classify them as gouty tophi or artifacts. Our solution, developed using 47 gout and 27 control patient scans, is three-stage. First, a computer vision algorithm crops green regions of interest (RoIs) from a patient's DECT scan frames and filters obvious false positives. Next, extracted RoIs are classified as tophi or artifact via one of three fine-tuned deep learning models; one model is trained to predict "small" RoIs, another "medium," and the third predicts "large" RoIs. Size thresholds are based on pixel area quartile statistics. Patient-level gout versus control classification is made via a machine learning system trained using a suite of features calculated from the outcomes of the RoI classifiers. Using 6-fold cross-validation, the proposed pipeline achieved a patient-level diagnostic accuracy, sensitivity, and specificity of 91.89%, 87.23%, and 100.00%. Using confidence values derived from the majority vote of RoI predictions, the best area under the receiver operator characteristics curve (ROC AUC) is 97.16%. The best RoI-level classifiers achieved mean tophus versus artifact accuracy, sensitivity, specificity, and ROC AUC of 89.61%, 85.42%, 93.70%, and 92.72%. Results demonstrate that machine/deep learning facilitates high-specificity gout diagnoses while maintaining respectable sensitivity.