利用MRI、超声和临床数据预测小胎龄胎儿的不良围产期结局。

Aviad Rabinowich, Aaron Olender, Netanell Avisdris, Yair Wexler, Bossmat Yehuda, Sharon Vanetik, Jayan Khawaja, Tamir Graziani, Bar Neeman, Ayala Zilberman, Maya Yanko, Dana Schonberger, Or Rachel Sadan, Miriam Misochnik, Bella Specktor-Fadida, Daphna Link-Sourani, Jacky Herzlich, Karina Krajden Haratz, Liran Hiersch, Liat Ben Sira, Leo Joskowicz, Dafna Ben Bashat
{"title":"利用MRI、超声和临床数据预测小胎龄胎儿的不良围产期结局。","authors":"Aviad Rabinowich, Aaron Olender, Netanell Avisdris, Yair Wexler, Bossmat Yehuda, Sharon Vanetik, Jayan Khawaja, Tamir Graziani, Bar Neeman, Ayala Zilberman, Maya Yanko, Dana Schonberger, Or Rachel Sadan, Miriam Misochnik, Bella Specktor-Fadida, Daphna Link-Sourani, Jacky Herzlich, Karina Krajden Haratz, Liran Hiersch, Liat Ben Sira, Leo Joskowicz, Dafna Ben Bashat","doi":"10.1093/radadv/umaf030","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fetal growth restriction (FGR) is associated with adverse perinatal outcomes. Existing sonographic approaches offer limited predictive accuracy. Combining fetal MRI, ultrasound and clinical data may improve perinatal prognostication.</p><p><strong>Purpose: </strong>To evaluate whether integrating prenatal MRI, ultrasound, and clinical features using machine learning (ML) improves prediction of adverse perinatal outcomes in FGR or small-for-gestational-age (SGA) pregnancies.</p><p><strong>Materials and methods: </strong>This single-center study included prospectively enrolled FGR/SGA and retrospectively included appropriate-for-gestational-age cases, with follow-up through neonatal discharge. Twenty-seven features from MRI, ultrasound, and clinical data were used in the final analysis. Seven ML classifiers were trained using stratified 5-fold cross-validation to predict composite adverse neonatal outcomes (CANO) and non-reassuring fetal status (NRFS). Sensitivity and specificity of the top-performing model (based on area under the curve [AUC]) were compared to standard biometric thresholds (estimated fetal weight and/or abdominal circumference <10th/<3rd centiles). Multiparametric, MRI-only, and ultrasound-only models were compared, along with reduced models using 4 features for CANO and 2 for NRFS.</p><p><strong>Results: </strong>One hundred thirty-one participants were included (60 FGR/SGA, 71 appropriate-for-gestational-age). The random forest method achieved the highest AUC for predicting CANO (0.912; 95% confidence interval [CI], 0.83-0.99) and NRFS (0.834; 95% CI, 0.76-0.91). For CANO, the multiparametric model demonstrated a 25% higher sensitivity (<i>P </i>= 0.005) and 17% higher specificity (<i>P </i>< 0.001) compared with the 3rd centile threshold, and improved specificity over the 10th centile threshold by 29% (<i>P </i>< 0.001). Sensitivity did not differ significantly from the 10th centile threshold (<i>P </i>= 0.366). For NRFS, specificity increased by 26% and 40% over the 3rd and 10th centile thresholds, respectively (<i>P </i>< 0.001), without significant differences in sensitivity (<i>P </i>= 1). No statistically significant differences were observed between the multiparametric, ultrasound-only, and MRI-only models (<i>P </i>≥ 0.826), or between full and reduced models (<i>P </i>≥ 0.313).</p><p><strong>Conclusions: </strong>ML-based models integrating multimodal data may improve risk stratification for predicting adverse perinatal outcomes in FGR/SGA pregnancies.</p>","PeriodicalId":519940,"journal":{"name":"Radiology advances","volume":"2 5","pages":"umaf030"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483154/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting adverse perinatal outcomes in small-for-gestational-age fetuses using MRI, ultrasound, and clinical data.\",\"authors\":\"Aviad Rabinowich, Aaron Olender, Netanell Avisdris, Yair Wexler, Bossmat Yehuda, Sharon Vanetik, Jayan Khawaja, Tamir Graziani, Bar Neeman, Ayala Zilberman, Maya Yanko, Dana Schonberger, Or Rachel Sadan, Miriam Misochnik, Bella Specktor-Fadida, Daphna Link-Sourani, Jacky Herzlich, Karina Krajden Haratz, Liran Hiersch, Liat Ben Sira, Leo Joskowicz, Dafna Ben Bashat\",\"doi\":\"10.1093/radadv/umaf030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fetal growth restriction (FGR) is associated with adverse perinatal outcomes. Existing sonographic approaches offer limited predictive accuracy. Combining fetal MRI, ultrasound and clinical data may improve perinatal prognostication.</p><p><strong>Purpose: </strong>To evaluate whether integrating prenatal MRI, ultrasound, and clinical features using machine learning (ML) improves prediction of adverse perinatal outcomes in FGR or small-for-gestational-age (SGA) pregnancies.</p><p><strong>Materials and methods: </strong>This single-center study included prospectively enrolled FGR/SGA and retrospectively included appropriate-for-gestational-age cases, with follow-up through neonatal discharge. Twenty-seven features from MRI, ultrasound, and clinical data were used in the final analysis. Seven ML classifiers were trained using stratified 5-fold cross-validation to predict composite adverse neonatal outcomes (CANO) and non-reassuring fetal status (NRFS). Sensitivity and specificity of the top-performing model (based on area under the curve [AUC]) were compared to standard biometric thresholds (estimated fetal weight and/or abdominal circumference <10th/<3rd centiles). Multiparametric, MRI-only, and ultrasound-only models were compared, along with reduced models using 4 features for CANO and 2 for NRFS.</p><p><strong>Results: </strong>One hundred thirty-one participants were included (60 FGR/SGA, 71 appropriate-for-gestational-age). The random forest method achieved the highest AUC for predicting CANO (0.912; 95% confidence interval [CI], 0.83-0.99) and NRFS (0.834; 95% CI, 0.76-0.91). For CANO, the multiparametric model demonstrated a 25% higher sensitivity (<i>P </i>= 0.005) and 17% higher specificity (<i>P </i>< 0.001) compared with the 3rd centile threshold, and improved specificity over the 10th centile threshold by 29% (<i>P </i>< 0.001). Sensitivity did not differ significantly from the 10th centile threshold (<i>P </i>= 0.366). For NRFS, specificity increased by 26% and 40% over the 3rd and 10th centile thresholds, respectively (<i>P </i>< 0.001), without significant differences in sensitivity (<i>P </i>= 1). No statistically significant differences were observed between the multiparametric, ultrasound-only, and MRI-only models (<i>P </i>≥ 0.826), or between full and reduced models (<i>P </i>≥ 0.313).</p><p><strong>Conclusions: </strong>ML-based models integrating multimodal data may improve risk stratification for predicting adverse perinatal outcomes in FGR/SGA pregnancies.</p>\",\"PeriodicalId\":519940,\"journal\":{\"name\":\"Radiology advances\",\"volume\":\"2 5\",\"pages\":\"umaf030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483154/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/radadv/umaf030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/radadv/umaf030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:胎儿生长受限(FGR)与不良围产期结局相关。现有的超声方法提供有限的预测准确性。结合胎儿MRI、超声和临床资料可改善围产儿预后。目的:评估使用机器学习(ML)整合产前MRI、超声和临床特征是否能提高对FGR或小胎龄(SGA)妊娠不良围产期结局的预测。材料和方法:本单中心研究包括前瞻性纳入FGR/SGA,回顾性纳入符合胎龄的病例,随访至新生儿出院。从MRI、超声和临床资料中获得的27个特征用于最终分析。7个ML分类器使用分层5重交叉验证进行训练,以预测新生儿不良结局(CANO)和非安心胎儿状态(NRFS)。将表现最佳的模型(基于曲线下面积[AUC])的敏感性和特异性与标准生物特征阈值(估计胎儿体重和/或腹围)进行比较。结果:131名参与者被纳入(60名FGR/SGA, 71名胎龄合适)。随机森林方法预测CANO(0.912, 95%可信区间[CI], 0.83-0.99)和NRFS (0.834, 95% CI, 0.76-0.91)的AUC最高。对于CANO,多参数模型的敏感性提高25% (P = 0.005),特异性提高17% (P = 0.366)。对于NRFS,特异性分别在第3百分位和第10百分位阈值上增加了26%和40% (P P = 1)。多参数模型、超声模型和mri模型之间无统计学差异(P≥0.826),全模型和精简模型之间无统计学差异(P≥0.313)。结论:整合多模态数据的基于ml的模型可以改善FGR/SGA妊娠不良围产期结局的风险分层预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting adverse perinatal outcomes in small-for-gestational-age fetuses using MRI, ultrasound, and clinical data.

Background: Fetal growth restriction (FGR) is associated with adverse perinatal outcomes. Existing sonographic approaches offer limited predictive accuracy. Combining fetal MRI, ultrasound and clinical data may improve perinatal prognostication.

Purpose: To evaluate whether integrating prenatal MRI, ultrasound, and clinical features using machine learning (ML) improves prediction of adverse perinatal outcomes in FGR or small-for-gestational-age (SGA) pregnancies.

Materials and methods: This single-center study included prospectively enrolled FGR/SGA and retrospectively included appropriate-for-gestational-age cases, with follow-up through neonatal discharge. Twenty-seven features from MRI, ultrasound, and clinical data were used in the final analysis. Seven ML classifiers were trained using stratified 5-fold cross-validation to predict composite adverse neonatal outcomes (CANO) and non-reassuring fetal status (NRFS). Sensitivity and specificity of the top-performing model (based on area under the curve [AUC]) were compared to standard biometric thresholds (estimated fetal weight and/or abdominal circumference <10th/<3rd centiles). Multiparametric, MRI-only, and ultrasound-only models were compared, along with reduced models using 4 features for CANO and 2 for NRFS.

Results: One hundred thirty-one participants were included (60 FGR/SGA, 71 appropriate-for-gestational-age). The random forest method achieved the highest AUC for predicting CANO (0.912; 95% confidence interval [CI], 0.83-0.99) and NRFS (0.834; 95% CI, 0.76-0.91). For CANO, the multiparametric model demonstrated a 25% higher sensitivity (P = 0.005) and 17% higher specificity (P < 0.001) compared with the 3rd centile threshold, and improved specificity over the 10th centile threshold by 29% (P < 0.001). Sensitivity did not differ significantly from the 10th centile threshold (P = 0.366). For NRFS, specificity increased by 26% and 40% over the 3rd and 10th centile thresholds, respectively (P < 0.001), without significant differences in sensitivity (P = 1). No statistically significant differences were observed between the multiparametric, ultrasound-only, and MRI-only models (P ≥ 0.826), or between full and reduced models (P ≥ 0.313).

Conclusions: ML-based models integrating multimodal data may improve risk stratification for predicting adverse perinatal outcomes in FGR/SGA pregnancies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信