基于深度学习的常染色体显性多囊肾病MRI肝囊肿分割。

Radiology advances Pub Date : 2024-05-23 eCollection Date: 2024-07-01 DOI:10.1093/radadv/umae014
Mina Chookhachizadeh Moghadam, Mohit Aspal, Xinzi He, Dominick J Romano, Arman Sharbatdaran, Zhongxiu Hu, Kurt Teichman, Hui Yi Ng He, Usama Sattar, Chenglin Zhu, Hreedi Dev, Daniil Shimonov, James M Chevalier, Akshay Goel, George Shih, Jon D Blumenfeld, Mert R Sabuncu, Martin R Prince
{"title":"基于深度学习的常染色体显性多囊肾病MRI肝囊肿分割。","authors":"Mina Chookhachizadeh Moghadam, Mohit Aspal, Xinzi He, Dominick J Romano, Arman Sharbatdaran, Zhongxiu Hu, Kurt Teichman, Hui Yi Ng He, Usama Sattar, Chenglin Zhu, Hreedi Dev, Daniil Shimonov, James M Chevalier, Akshay Goel, George Shih, Jon D Blumenfeld, Mert R Sabuncu, Martin R Prince","doi":"10.1093/radadv/umae014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autosomal dominant polycystic kidney disease (ADPKD) can lead to polycystic liver disease (PLD), characterized by liver cysts. Although majority of the patients are asymptomatic, massively enlarged liver secondary to PLD can cause discomfort, and compression on adjacent structures requiring cyst aspiration/fenestration, partial liver resection, or liver transplantation. Monitoring PLD by measuring liver volume fails to track the early stages when liver cyst volume is too small to affect liver volume.</p><p><strong>Purpose: </strong>To improve PLD assessment in the early stages by automating detection and segmentation of liver cysts using deep learning (DL) models.</p><p><strong>Materials and methods: </strong>A self-configured UNet-based platform (nnU-Net) was trained with 40 ADPKD subjects with liver cysts annotated by a radiologist. Internal (n = 7), External (n = 10), and test-retest reproducibility (n = 17) validations included macro- and micro-level performance metrics: patient-level Dice scores (PDice), along with voxel-level true positive rates (VTPR), as well as analysis of time saved in a model-assisted scenario. Additionally, we assessed human-level reliability in liver cyst segmentation and evaluated the model's test-retest reproducibility. We further compared liver volume vs cyst volume for tracking disease in a subject with 16+ years follow-up.</p><p><strong>Results: </strong>The model achieved an 82% ± 11% PDice and a 75% ± 15% VTPR on the internal test sets (n = 7 patients), and 80% ± 12% Dice score and a 91% ± 7% VTPR on the external test sets (n = 10 patients). It excelled particularly in detecting small liver cysts, a challenging task for manual annotation. This efficiency translated to a median of 91% (IQR: 14%) reduction in annotation time compared to manual labeling. Test-retest assessment demonstrated excellent reproducibility, with coefficients of variation of 94% for liver cyst fraction and 92% for cyst count.</p><p><strong>Conclusion: </strong>DL automation of liver cyst segmentations demonstrates potential to improve tracking of liver cyst volume in polycystic liver disease.</p>","PeriodicalId":519940,"journal":{"name":"Radiology advances","volume":"1 2","pages":"umae014"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429238/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based liver cyst segmentation in MRI for autosomal dominant polycystic kidney disease.\",\"authors\":\"Mina Chookhachizadeh Moghadam, Mohit Aspal, Xinzi He, Dominick J Romano, Arman Sharbatdaran, Zhongxiu Hu, Kurt Teichman, Hui Yi Ng He, Usama Sattar, Chenglin Zhu, Hreedi Dev, Daniil Shimonov, James M Chevalier, Akshay Goel, George Shih, Jon D Blumenfeld, Mert R Sabuncu, Martin R Prince\",\"doi\":\"10.1093/radadv/umae014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Autosomal dominant polycystic kidney disease (ADPKD) can lead to polycystic liver disease (PLD), characterized by liver cysts. Although majority of the patients are asymptomatic, massively enlarged liver secondary to PLD can cause discomfort, and compression on adjacent structures requiring cyst aspiration/fenestration, partial liver resection, or liver transplantation. Monitoring PLD by measuring liver volume fails to track the early stages when liver cyst volume is too small to affect liver volume.</p><p><strong>Purpose: </strong>To improve PLD assessment in the early stages by automating detection and segmentation of liver cysts using deep learning (DL) models.</p><p><strong>Materials and methods: </strong>A self-configured UNet-based platform (nnU-Net) was trained with 40 ADPKD subjects with liver cysts annotated by a radiologist. Internal (n = 7), External (n = 10), and test-retest reproducibility (n = 17) validations included macro- and micro-level performance metrics: patient-level Dice scores (PDice), along with voxel-level true positive rates (VTPR), as well as analysis of time saved in a model-assisted scenario. Additionally, we assessed human-level reliability in liver cyst segmentation and evaluated the model's test-retest reproducibility. We further compared liver volume vs cyst volume for tracking disease in a subject with 16+ years follow-up.</p><p><strong>Results: </strong>The model achieved an 82% ± 11% PDice and a 75% ± 15% VTPR on the internal test sets (n = 7 patients), and 80% ± 12% Dice score and a 91% ± 7% VTPR on the external test sets (n = 10 patients). It excelled particularly in detecting small liver cysts, a challenging task for manual annotation. This efficiency translated to a median of 91% (IQR: 14%) reduction in annotation time compared to manual labeling. Test-retest assessment demonstrated excellent reproducibility, with coefficients of variation of 94% for liver cyst fraction and 92% for cyst count.</p><p><strong>Conclusion: </strong>DL automation of liver cyst segmentations demonstrates potential to improve tracking of liver cyst volume in polycystic liver disease.</p>\",\"PeriodicalId\":519940,\"journal\":{\"name\":\"Radiology advances\",\"volume\":\"1 2\",\"pages\":\"umae014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12429238/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/radadv/umae014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/radadv/umae014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:常染色体显性多囊肾病(ADPKD)可导致以肝囊肿为特征的多囊性肝病(PLD)。虽然大多数患者无症状,但继发于PLD的肝脏大量增大可引起不适,并压迫邻近结构,需要囊肿穿刺/开窗、部分肝切除或肝移植。当肝囊肿体积过小,不足以影响肝脏体积时,通过测量肝脏体积监测PLD无法追踪早期阶段。目的:利用深度学习(DL)模型对肝囊肿进行自动检测和分割,提高早期PLD的评估水平。材料和方法:采用自配置的基于unet的平台(nnU-Net)对40例由放射科医师注释的ADPKD肝囊肿患者进行训练。内部(n = 7),外部(n = 10)和测试-再测试可重复性(n = 17)验证包括宏观和微观水平的性能指标:患者水平的Dice评分(pice),以及体素水平的真阳性率(VTPR),以及模型辅助场景中节省的时间分析。此外,我们评估了肝囊肿分割的人水平可靠性,并评估了模型的测试-重测试可重复性。我们进一步比较了肝脏体积与囊肿体积在随访16年以上的受试者中追踪疾病的情况。结果:该模型在内部测试集(n = 7例)的pice评分为82%±11%,VTPR为75%±15%;在外部测试集(n = 10例)的Dice评分为80%±12%,VTPR为91%±7%。它特别擅长于检测小肝囊肿,这是手动注释的一项具有挑战性的任务。与手动标注相比,这种效率转化为中位数91% (IQR: 14%)的注释时间减少。测试-重测试评估显示出极好的重复性,肝囊肿分数的变异系数为94%,囊肿计数的变异系数为92%。结论:肝囊肿分割的DL自动化有可能改善多囊性肝病肝囊肿体积的跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-based liver cyst segmentation in MRI for autosomal dominant polycystic kidney disease.

Deep learning-based liver cyst segmentation in MRI for autosomal dominant polycystic kidney disease.

Deep learning-based liver cyst segmentation in MRI for autosomal dominant polycystic kidney disease.

Deep learning-based liver cyst segmentation in MRI for autosomal dominant polycystic kidney disease.

Background: Autosomal dominant polycystic kidney disease (ADPKD) can lead to polycystic liver disease (PLD), characterized by liver cysts. Although majority of the patients are asymptomatic, massively enlarged liver secondary to PLD can cause discomfort, and compression on adjacent structures requiring cyst aspiration/fenestration, partial liver resection, or liver transplantation. Monitoring PLD by measuring liver volume fails to track the early stages when liver cyst volume is too small to affect liver volume.

Purpose: To improve PLD assessment in the early stages by automating detection and segmentation of liver cysts using deep learning (DL) models.

Materials and methods: A self-configured UNet-based platform (nnU-Net) was trained with 40 ADPKD subjects with liver cysts annotated by a radiologist. Internal (n = 7), External (n = 10), and test-retest reproducibility (n = 17) validations included macro- and micro-level performance metrics: patient-level Dice scores (PDice), along with voxel-level true positive rates (VTPR), as well as analysis of time saved in a model-assisted scenario. Additionally, we assessed human-level reliability in liver cyst segmentation and evaluated the model's test-retest reproducibility. We further compared liver volume vs cyst volume for tracking disease in a subject with 16+ years follow-up.

Results: The model achieved an 82% ± 11% PDice and a 75% ± 15% VTPR on the internal test sets (n = 7 patients), and 80% ± 12% Dice score and a 91% ± 7% VTPR on the external test sets (n = 10 patients). It excelled particularly in detecting small liver cysts, a challenging task for manual annotation. This efficiency translated to a median of 91% (IQR: 14%) reduction in annotation time compared to manual labeling. Test-retest assessment demonstrated excellent reproducibility, with coefficients of variation of 94% for liver cyst fraction and 92% for cyst count.

Conclusion: DL automation of liver cyst segmentations demonstrates potential to improve tracking of liver cyst volume in polycystic liver disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信