基于CdTe半导体的伽马相机在硼中子俘获治疗中的实时剂量测定的评价。

IF 3.2
Medical physics Pub Date : 2025-10-01 DOI:10.1002/mp.70062
I-Huan Chiu, Takahito Osawa, Takehiro Sumita, Kazuhiko Ninomiya, Shin'ichiro Takeda, Tadayuki Takahashi
{"title":"基于CdTe半导体的伽马相机在硼中子俘获治疗中的实时剂量测定的评价。","authors":"I-Huan Chiu, Takahito Osawa, Takehiro Sumita, Kazuhiko Ninomiya, Shin'ichiro Takeda, Tadayuki Takahashi","doi":"10.1002/mp.70062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Boron neutron capture therapy (BNCT) is a cancer treatment that leverages the nuclear reaction between boron-10 ( <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\rm B}$</annotation></semantics> </math> ) and thermal neutrons to generate high-energy <math><semantics><mi>α</mi> <annotation>$\\alpha$</annotation></semantics> </math> particles and <math> <semantics> <mrow><msup><mrow></mrow> <mn>7</mn></msup> <mi>Li</mi></mrow> <annotation>$^{7}{\\rm Li}$</annotation></semantics> </math> nuclei that selectively destroy cancer cells while sparing healthy tissues. However, BNCT is limited by current dosimetry methods that are incapable of monitoring boron distribution during therapy. An imaging system capable of real-time dosimetry is essential for optimizing treatment efficacy and minimizing collateral damage.</p><p><strong>Purpose: </strong>This study aimed to develop a high-resolution real-time boron dosimetry system for BNCT by employing a cadmium telluride double-sided strip detector (CdTe-DSD). The CdTe-DSD enables precise mapping of <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\rm B}$</annotation></semantics> </math> distribution by detecting the 478 keV prompt <math><semantics><mi>γ</mi> <annotation>$\\gamma$</annotation></semantics> </math> -rays emitted during the <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi> <msup><mrow><mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo></mrow> <mn>7</mn></msup> <mi>Li</mi></mrow> <annotation>$^{10}{\\rm B} ({\\rm n},\\alpha)^{7}{\\rm Li}$</annotation></semantics> </math>  reaction.</p><p><strong>Methods: </strong>The imaging system was constructed by integrating a CdTe-DSD with a 2-mm diameter pinhole collimator. The CdTe-DSD, comprising a 2-mm-thick CdTe semiconductor, has a sensitive area of 32 <math> <semantics><mrow><mspace></mspace> <mo>×</mo> <mspace></mspace></mrow> <annotation>$\\,\\times \\,$</annotation></semantics> </math> 32  <math> <semantics><msup><mi>mm</mi> <mn>2</mn></msup> <annotation>${\\rm mm}^2$</annotation></semantics> </math> . Neutron irradiation experiments were performed at Japan Research Reactor No. 3 using various boron-containing samples, including boric acid solutions, powders, and granular boron, with boron masses ranging from 0.02 to 2.00 mg. We implemented the neutron shields using a 5-mm-thick <math> <semantics> <mrow><msup><mrow></mrow> <mn>6</mn></msup> <msub><mi>Li</mi> <mn>2</mn></msub> <msub><mi>CO</mi> <mn>3</mn></msub> </mrow> <annotation>$^6{\\rm Li}_2{\\rm CO}_3$</annotation></semantics> </math> plate and LiF tiles to reduce the background from scattered neutrons during the measurement.</p><p><strong>Results: </strong>The imaging system successfully detected the 478 keV <math><semantics><mi>γ</mi> <annotation>$\\gamma$</annotation></semantics> </math> -ray signal with an energy resolution of 7.3 keV at 511 keV. The reconstructed two-dimensional <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\rm B}$</annotation></semantics> </math> images demonstrate the capability of the CdTe-DSD to accurately map the <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\rm B}$</annotation></semantics> </math> distribution in the samples. Notably, we evaluated the important background contributions from the scattering neutrons in the development of the CdTe-DSD-based imaging system. When the scattering neutrons in a neutron experiment hit the CdTe-DSD, 558 keV <math><semantics><mi>γ</mi> <annotation>$\\gamma$</annotation></semantics> </math> -rays of <math> <semantics> <mrow><msup><mrow></mrow> <mn>113</mn></msup> <mi>Cd</mi></mrow> <annotation>$^{113}{\\rm Cd}$</annotation></semantics> </math> were produced. Under three experimental conditions with different neutron shielding configurations, we found that enhanced neutron shielding considerably reduced the background contribution created by the <math> <semantics> <mrow><msup><mrow></mrow> <mn>113</mn></msup> <mi>Cd</mi></mrow> <annotation>$^{113}{\\rm Cd}$</annotation></semantics> </math> background signal, thereby improving the contrast-to-noise ratio (CNR) in the image quality assessment. Upon comparing the condition with minimal neutron shielding to that with maximal shielding, a 14-fold enhancement in the CNR was observed.</p><p><strong>Conclusions: </strong>This study demonstrates that a CdTe-DSD-based gamma camera is a promising tool for real-time boron dosimetry in BNCT. The detector's high energy resolution and excellent spatial resolution enable precise detection of 478 keV prompt <math><semantics><mi>γ</mi> <annotation>$\\gamma$</annotation></semantics> </math> -rays, facilitating accurate mapping of boron distribution during neutron irradiation. These findings support the developed system's potential to enhance BNCT treatment planning and patient-specific dose monitoring. Future research will optimize neutron shielding and explore advanced collimator designs to improve sensitivity in clinical settings.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":"52 10","pages":"e70062"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a CdTe semiconductor-based gamma camera for real-time dose dosimetry in boron neutron capture therapy.\",\"authors\":\"I-Huan Chiu, Takahito Osawa, Takehiro Sumita, Kazuhiko Ninomiya, Shin'ichiro Takeda, Tadayuki Takahashi\",\"doi\":\"10.1002/mp.70062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Boron neutron capture therapy (BNCT) is a cancer treatment that leverages the nuclear reaction between boron-10 ( <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\\\rm B}$</annotation></semantics> </math> ) and thermal neutrons to generate high-energy <math><semantics><mi>α</mi> <annotation>$\\\\alpha$</annotation></semantics> </math> particles and <math> <semantics> <mrow><msup><mrow></mrow> <mn>7</mn></msup> <mi>Li</mi></mrow> <annotation>$^{7}{\\\\rm Li}$</annotation></semantics> </math> nuclei that selectively destroy cancer cells while sparing healthy tissues. However, BNCT is limited by current dosimetry methods that are incapable of monitoring boron distribution during therapy. An imaging system capable of real-time dosimetry is essential for optimizing treatment efficacy and minimizing collateral damage.</p><p><strong>Purpose: </strong>This study aimed to develop a high-resolution real-time boron dosimetry system for BNCT by employing a cadmium telluride double-sided strip detector (CdTe-DSD). The CdTe-DSD enables precise mapping of <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\\\rm B}$</annotation></semantics> </math> distribution by detecting the 478 keV prompt <math><semantics><mi>γ</mi> <annotation>$\\\\gamma$</annotation></semantics> </math> -rays emitted during the <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi> <msup><mrow><mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo></mrow> <mn>7</mn></msup> <mi>Li</mi></mrow> <annotation>$^{10}{\\\\rm B} ({\\\\rm n},\\\\alpha)^{7}{\\\\rm Li}$</annotation></semantics> </math>  reaction.</p><p><strong>Methods: </strong>The imaging system was constructed by integrating a CdTe-DSD with a 2-mm diameter pinhole collimator. The CdTe-DSD, comprising a 2-mm-thick CdTe semiconductor, has a sensitive area of 32 <math> <semantics><mrow><mspace></mspace> <mo>×</mo> <mspace></mspace></mrow> <annotation>$\\\\,\\\\times \\\\,$</annotation></semantics> </math> 32  <math> <semantics><msup><mi>mm</mi> <mn>2</mn></msup> <annotation>${\\\\rm mm}^2$</annotation></semantics> </math> . Neutron irradiation experiments were performed at Japan Research Reactor No. 3 using various boron-containing samples, including boric acid solutions, powders, and granular boron, with boron masses ranging from 0.02 to 2.00 mg. We implemented the neutron shields using a 5-mm-thick <math> <semantics> <mrow><msup><mrow></mrow> <mn>6</mn></msup> <msub><mi>Li</mi> <mn>2</mn></msub> <msub><mi>CO</mi> <mn>3</mn></msub> </mrow> <annotation>$^6{\\\\rm Li}_2{\\\\rm CO}_3$</annotation></semantics> </math> plate and LiF tiles to reduce the background from scattered neutrons during the measurement.</p><p><strong>Results: </strong>The imaging system successfully detected the 478 keV <math><semantics><mi>γ</mi> <annotation>$\\\\gamma$</annotation></semantics> </math> -ray signal with an energy resolution of 7.3 keV at 511 keV. The reconstructed two-dimensional <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\\\rm B}$</annotation></semantics> </math> images demonstrate the capability of the CdTe-DSD to accurately map the <math> <semantics> <mrow><msup><mrow></mrow> <mn>10</mn></msup> <mi>B</mi></mrow> <annotation>$^{10}{\\\\rm B}$</annotation></semantics> </math> distribution in the samples. Notably, we evaluated the important background contributions from the scattering neutrons in the development of the CdTe-DSD-based imaging system. When the scattering neutrons in a neutron experiment hit the CdTe-DSD, 558 keV <math><semantics><mi>γ</mi> <annotation>$\\\\gamma$</annotation></semantics> </math> -rays of <math> <semantics> <mrow><msup><mrow></mrow> <mn>113</mn></msup> <mi>Cd</mi></mrow> <annotation>$^{113}{\\\\rm Cd}$</annotation></semantics> </math> were produced. Under three experimental conditions with different neutron shielding configurations, we found that enhanced neutron shielding considerably reduced the background contribution created by the <math> <semantics> <mrow><msup><mrow></mrow> <mn>113</mn></msup> <mi>Cd</mi></mrow> <annotation>$^{113}{\\\\rm Cd}$</annotation></semantics> </math> background signal, thereby improving the contrast-to-noise ratio (CNR) in the image quality assessment. Upon comparing the condition with minimal neutron shielding to that with maximal shielding, a 14-fold enhancement in the CNR was observed.</p><p><strong>Conclusions: </strong>This study demonstrates that a CdTe-DSD-based gamma camera is a promising tool for real-time boron dosimetry in BNCT. The detector's high energy resolution and excellent spatial resolution enable precise detection of 478 keV prompt <math><semantics><mi>γ</mi> <annotation>$\\\\gamma$</annotation></semantics> </math> -rays, facilitating accurate mapping of boron distribution during neutron irradiation. These findings support the developed system's potential to enhance BNCT treatment planning and patient-specific dose monitoring. Future research will optimize neutron shielding and explore advanced collimator designs to improve sensitivity in clinical settings.</p>\",\"PeriodicalId\":94136,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"52 10\",\"pages\":\"e70062\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mp.70062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.70062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:硼中子俘获疗法(BNCT)是一种利用硼-10 (10 B $^{10}{\rm B}$)和热中子之间的核反应产生高能α $\alpha$粒子和7 Li $^{7}{\rm Li}$核的癌症治疗方法,这些粒子和7 Li 核选择性地破坏癌细胞,同时保留健康组织。然而,BNCT受到目前剂量学方法的限制,无法监测治疗过程中硼的分布。能够实时剂量测定的成像系统对于优化治疗效果和减少附带损害至关重要。目的:利用碲化镉双面条形检测器(CdTe-DSD)建立高分辨率实时硼剂量测定系统。CdTe-DSD通过探测在10b (n, α) 7 Li $^{10}{\rm B} ({\rm n},\alpha)^{7}{\rm Li}$反应中发射的478 keV提示γ $\gamma$射线,可以精确绘制10b $^{10}{\rm B}$分布。方法:将CdTe-DSD与直径2 mm的针孔准直器集成,构建成像系统。CdTe- dsd由2mm厚的CdTe半导体组成,其敏感面积为32 × $\,\times \,$ 32 mm 2 ${\rm mm}^2$。中子辐照实验在日本3号研究堆进行,使用了各种含硼样品,包括硼酸溶液、粉末和颗粒硼,硼质量从0.02到2.00毫克不等。我们使用5毫米厚的6 Li 2 CO 3 $^6{\rm Li}_2{\rm CO}_3$板和liff瓦来实现中子屏蔽,以减少测量过程中散射中子的背景。结果:该成像系统成功探测到478 keV γ $\gamma$射线信号,在511 keV处能量分辨率为7.3 keV。重建的二维10 B $^{10}{\rm B}$图像证明了CdTe-DSD能够准确地绘制样品中的10 B $^{10}{\rm B}$分布。值得注意的是,我们评估了散射中子在基于cdte - dsd的成像系统开发中的重要背景贡献。在中子实验中,当散射中子撞击CdTe-DSD时,产生558 keV γ $\gamma$ - 113 Cd $^{113}{\rm Cd}$射线。在三种不同中子屏蔽配置的实验条件下,我们发现增强的中子屏蔽大大降低了113 Cd $^{113}{\rm Cd}$背景信号产生的背景贡献,从而提高了图像质量评估中的噪比(CNR)。在将最小中子屏蔽条件与最大中子屏蔽条件进行比较后,观察到CNR提高了14倍。结论:本研究表明,基于cdte - dsd的伽马相机是BNCT实时硼剂量测定的一种很有前景的工具。探测器的高能量分辨率和出色的空间分辨率能够精确检测478 keV提示γ $\gamma$射线,有助于在中子辐照过程中准确绘制硼分布。这些发现支持了开发的系统在加强BNCT治疗计划和患者特异性剂量监测方面的潜力。未来的研究将优化中子屏蔽和探索先进的准直器设计,以提高临床设置的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of a CdTe semiconductor-based gamma camera for real-time dose dosimetry in boron neutron capture therapy.

Background: Boron neutron capture therapy (BNCT) is a cancer treatment that leverages the nuclear reaction between boron-10 ( 10 B $^{10}{\rm B}$ ) and thermal neutrons to generate high-energy α $\alpha$ particles and 7 Li $^{7}{\rm Li}$ nuclei that selectively destroy cancer cells while sparing healthy tissues. However, BNCT is limited by current dosimetry methods that are incapable of monitoring boron distribution during therapy. An imaging system capable of real-time dosimetry is essential for optimizing treatment efficacy and minimizing collateral damage.

Purpose: This study aimed to develop a high-resolution real-time boron dosimetry system for BNCT by employing a cadmium telluride double-sided strip detector (CdTe-DSD). The CdTe-DSD enables precise mapping of 10 B $^{10}{\rm B}$ distribution by detecting the 478 keV prompt γ $\gamma$ -rays emitted during the 10 B ( n , α ) 7 Li $^{10}{\rm B} ({\rm n},\alpha)^{7}{\rm Li}$  reaction.

Methods: The imaging system was constructed by integrating a CdTe-DSD with a 2-mm diameter pinhole collimator. The CdTe-DSD, comprising a 2-mm-thick CdTe semiconductor, has a sensitive area of 32 × $\,\times \,$ 32  mm 2 ${\rm mm}^2$ . Neutron irradiation experiments were performed at Japan Research Reactor No. 3 using various boron-containing samples, including boric acid solutions, powders, and granular boron, with boron masses ranging from 0.02 to 2.00 mg. We implemented the neutron shields using a 5-mm-thick 6 Li 2 CO 3 $^6{\rm Li}_2{\rm CO}_3$ plate and LiF tiles to reduce the background from scattered neutrons during the measurement.

Results: The imaging system successfully detected the 478 keV γ $\gamma$ -ray signal with an energy resolution of 7.3 keV at 511 keV. The reconstructed two-dimensional 10 B $^{10}{\rm B}$ images demonstrate the capability of the CdTe-DSD to accurately map the 10 B $^{10}{\rm B}$ distribution in the samples. Notably, we evaluated the important background contributions from the scattering neutrons in the development of the CdTe-DSD-based imaging system. When the scattering neutrons in a neutron experiment hit the CdTe-DSD, 558 keV γ $\gamma$ -rays of 113 Cd $^{113}{\rm Cd}$ were produced. Under three experimental conditions with different neutron shielding configurations, we found that enhanced neutron shielding considerably reduced the background contribution created by the 113 Cd $^{113}{\rm Cd}$ background signal, thereby improving the contrast-to-noise ratio (CNR) in the image quality assessment. Upon comparing the condition with minimal neutron shielding to that with maximal shielding, a 14-fold enhancement in the CNR was observed.

Conclusions: This study demonstrates that a CdTe-DSD-based gamma camera is a promising tool for real-time boron dosimetry in BNCT. The detector's high energy resolution and excellent spatial resolution enable precise detection of 478 keV prompt γ $\gamma$ -rays, facilitating accurate mapping of boron distribution during neutron irradiation. These findings support the developed system's potential to enhance BNCT treatment planning and patient-specific dose monitoring. Future research will optimize neutron shielding and explore advanced collimator designs to improve sensitivity in clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信