Ruwayda Alharbi, Ondrej Strnad, Markus Hadwiger, Ivan Viola
{"title":"纳米宇宙:结构细节和自适应外壳映射的虚拟实例。","authors":"Ruwayda Alharbi, Ondrej Strnad, Markus Hadwiger, Ivan Viola","doi":"10.1109/TVCG.2025.3618914","DOIUrl":null,"url":null,"abstract":"<p><p>Rendering huge biological scenes with atomistic detail presents a significant challenge in molecular visualization due to the memory limitations inherent in traditional rendering approaches. In this paper, we propose a novel method for the interactive rendering of massive molecular scenes based on hardware-accelerated ray tracing. Our approach circumvents GPU memory constraints by introducing virtual instantiation of full-detail scene elements. Using instancing significantly reduces memory consumption while preserving the full atomistic detail of scenes comprising trillions of atoms, with interactive rendering performance and completely free user exploration. We utilize coarse meshes as proxy geometries to approximate the overall shape of biological compartments, and access all atomistic detail dynamically during ray tracing. We do this via a novel adaptive technique utilizing a volumetric shell layer of prisms extruded around proxy geometry triangles, and a virtual volume grid for the interior of each compartment. Our algorithm scales to enormous molecular scenes with minimal memory consumption and the potential to accommodate even larger scenes. Our method also supports advanced effects such as clipping planes and animations. We demonstrate the efficiency and scalability of our approach by rendering tens of instances of Red Blood Cell and SARS-CoV-2 models theoretically containing more than 20 trillion atoms.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanouniverse: Virtual Instancing of Structural Detail and Adaptive Shell Mapping.\",\"authors\":\"Ruwayda Alharbi, Ondrej Strnad, Markus Hadwiger, Ivan Viola\",\"doi\":\"10.1109/TVCG.2025.3618914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rendering huge biological scenes with atomistic detail presents a significant challenge in molecular visualization due to the memory limitations inherent in traditional rendering approaches. In this paper, we propose a novel method for the interactive rendering of massive molecular scenes based on hardware-accelerated ray tracing. Our approach circumvents GPU memory constraints by introducing virtual instantiation of full-detail scene elements. Using instancing significantly reduces memory consumption while preserving the full atomistic detail of scenes comprising trillions of atoms, with interactive rendering performance and completely free user exploration. We utilize coarse meshes as proxy geometries to approximate the overall shape of biological compartments, and access all atomistic detail dynamically during ray tracing. We do this via a novel adaptive technique utilizing a volumetric shell layer of prisms extruded around proxy geometry triangles, and a virtual volume grid for the interior of each compartment. Our algorithm scales to enormous molecular scenes with minimal memory consumption and the potential to accommodate even larger scenes. Our method also supports advanced effects such as clipping planes and animations. We demonstrate the efficiency and scalability of our approach by rendering tens of instances of Red Blood Cell and SARS-CoV-2 models theoretically containing more than 20 trillion atoms.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3618914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3618914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanouniverse: Virtual Instancing of Structural Detail and Adaptive Shell Mapping.
Rendering huge biological scenes with atomistic detail presents a significant challenge in molecular visualization due to the memory limitations inherent in traditional rendering approaches. In this paper, we propose a novel method for the interactive rendering of massive molecular scenes based on hardware-accelerated ray tracing. Our approach circumvents GPU memory constraints by introducing virtual instantiation of full-detail scene elements. Using instancing significantly reduces memory consumption while preserving the full atomistic detail of scenes comprising trillions of atoms, with interactive rendering performance and completely free user exploration. We utilize coarse meshes as proxy geometries to approximate the overall shape of biological compartments, and access all atomistic detail dynamically during ray tracing. We do this via a novel adaptive technique utilizing a volumetric shell layer of prisms extruded around proxy geometry triangles, and a virtual volume grid for the interior of each compartment. Our algorithm scales to enormous molecular scenes with minimal memory consumption and the potential to accommodate even larger scenes. Our method also supports advanced effects such as clipping planes and animations. We demonstrate the efficiency and scalability of our approach by rendering tens of instances of Red Blood Cell and SARS-CoV-2 models theoretically containing more than 20 trillion atoms.