Irina Diekmann, Taniawati Supali, Kerstin Fischer, Elisa Iskandar, Noviani Sugianto, Yossi Destani, Rahmat Alfian, Gary J Weil, Peter U Fischer
{"title":"印度尼西亚勿里洞区淋巴丝虫病流行地区动物中的马来布鲁氏菌和其他丝虫病种。","authors":"Irina Diekmann, Taniawati Supali, Kerstin Fischer, Elisa Iskandar, Noviani Sugianto, Yossi Destani, Rahmat Alfian, Gary J Weil, Peter U Fischer","doi":"10.1371/journal.pntd.0013593","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brugia malayi is the most common cause of lymphatic filariasis (LF) in Indonesia. A zoophilic ecotype that infects both humans and animals occur in Belitung District in Indonesia. The district received five annual rounds of mass drug administration (MDA) between 2006 and 2010 and passed three transmission assessment surveys (TAS) in subsequent years. However, a survey in five villages in 2021 showed a microfilaria (Mf) prevalence of 2.1% in humans. The reappearance of B. malayi infection in humans may be due to reintroduction from animal reservoirs. The goal of this study was to determine B. malayi prevalence in potential reservoir hosts and to improve the identification of filarial Mf found in animals.</p><p><strong>Methodology/principal findings: </strong>Venous blood was collected from 291 cats, 41 dogs, and 163 crab-eating macaques (Macaca fascicularis) from areas with and without human B. malayi infection. B. malayi Mf were detected by microscopy in 1.4%, 7.3% and 13.5% of the samples, respectively. The geometric mean Mf density varied from 133 Mf/mL(dogs) to 255 Mf/mL (macaques). While Brugia Mf were easily differentiated from Dirofilaria Mf by microscopy, the morphological differentiation between B. malayi and B. pahangi was not reliable. qPCR detected B. malayi DNA in blood from 4.1% of cats, 2.4% dogs, and 13.5% macaques. In addition, infections or co-infection with B. pahangi (cats, dogs) or D. immitis (dogs) were detected. A novel Dirofilaria species was morphologically identified in 20.3% of macaques.</p><p><strong>Conclusions/significance: </strong>Microscopy was less accurate for detection and species identification of Mf than qPCR. The presence of B. malayi Mf in animals represents a challenge for the elimination of LF in some areas in Indonesia. More research is needed to better understand B. malayi transmission between animals and humans in endemic areas like Belitung where routine MDA may not be sufficient to eliminate LF.</p>","PeriodicalId":49000,"journal":{"name":"PLoS Neglected Tropical Diseases","volume":"19 10","pages":"e0013593"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503295/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brugia malayi and other filarial parasite species in animals in areas endemic for lymphatic filariasis in Belitung District, Indonesia.\",\"authors\":\"Irina Diekmann, Taniawati Supali, Kerstin Fischer, Elisa Iskandar, Noviani Sugianto, Yossi Destani, Rahmat Alfian, Gary J Weil, Peter U Fischer\",\"doi\":\"10.1371/journal.pntd.0013593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Brugia malayi is the most common cause of lymphatic filariasis (LF) in Indonesia. A zoophilic ecotype that infects both humans and animals occur in Belitung District in Indonesia. The district received five annual rounds of mass drug administration (MDA) between 2006 and 2010 and passed three transmission assessment surveys (TAS) in subsequent years. However, a survey in five villages in 2021 showed a microfilaria (Mf) prevalence of 2.1% in humans. The reappearance of B. malayi infection in humans may be due to reintroduction from animal reservoirs. The goal of this study was to determine B. malayi prevalence in potential reservoir hosts and to improve the identification of filarial Mf found in animals.</p><p><strong>Methodology/principal findings: </strong>Venous blood was collected from 291 cats, 41 dogs, and 163 crab-eating macaques (Macaca fascicularis) from areas with and without human B. malayi infection. B. malayi Mf were detected by microscopy in 1.4%, 7.3% and 13.5% of the samples, respectively. The geometric mean Mf density varied from 133 Mf/mL(dogs) to 255 Mf/mL (macaques). While Brugia Mf were easily differentiated from Dirofilaria Mf by microscopy, the morphological differentiation between B. malayi and B. pahangi was not reliable. qPCR detected B. malayi DNA in blood from 4.1% of cats, 2.4% dogs, and 13.5% macaques. In addition, infections or co-infection with B. pahangi (cats, dogs) or D. immitis (dogs) were detected. A novel Dirofilaria species was morphologically identified in 20.3% of macaques.</p><p><strong>Conclusions/significance: </strong>Microscopy was less accurate for detection and species identification of Mf than qPCR. The presence of B. malayi Mf in animals represents a challenge for the elimination of LF in some areas in Indonesia. More research is needed to better understand B. malayi transmission between animals and humans in endemic areas like Belitung where routine MDA may not be sufficient to eliminate LF.</p>\",\"PeriodicalId\":49000,\"journal\":{\"name\":\"PLoS Neglected Tropical Diseases\",\"volume\":\"19 10\",\"pages\":\"e0013593\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503295/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Neglected Tropical Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pntd.0013593\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Neglected Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pntd.0013593","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Brugia malayi and other filarial parasite species in animals in areas endemic for lymphatic filariasis in Belitung District, Indonesia.
Background: Brugia malayi is the most common cause of lymphatic filariasis (LF) in Indonesia. A zoophilic ecotype that infects both humans and animals occur in Belitung District in Indonesia. The district received five annual rounds of mass drug administration (MDA) between 2006 and 2010 and passed three transmission assessment surveys (TAS) in subsequent years. However, a survey in five villages in 2021 showed a microfilaria (Mf) prevalence of 2.1% in humans. The reappearance of B. malayi infection in humans may be due to reintroduction from animal reservoirs. The goal of this study was to determine B. malayi prevalence in potential reservoir hosts and to improve the identification of filarial Mf found in animals.
Methodology/principal findings: Venous blood was collected from 291 cats, 41 dogs, and 163 crab-eating macaques (Macaca fascicularis) from areas with and without human B. malayi infection. B. malayi Mf were detected by microscopy in 1.4%, 7.3% and 13.5% of the samples, respectively. The geometric mean Mf density varied from 133 Mf/mL(dogs) to 255 Mf/mL (macaques). While Brugia Mf were easily differentiated from Dirofilaria Mf by microscopy, the morphological differentiation between B. malayi and B. pahangi was not reliable. qPCR detected B. malayi DNA in blood from 4.1% of cats, 2.4% dogs, and 13.5% macaques. In addition, infections or co-infection with B. pahangi (cats, dogs) or D. immitis (dogs) were detected. A novel Dirofilaria species was morphologically identified in 20.3% of macaques.
Conclusions/significance: Microscopy was less accurate for detection and species identification of Mf than qPCR. The presence of B. malayi Mf in animals represents a challenge for the elimination of LF in some areas in Indonesia. More research is needed to better understand B. malayi transmission between animals and humans in endemic areas like Belitung where routine MDA may not be sufficient to eliminate LF.
期刊介绍:
PLOS Neglected Tropical Diseases publishes research devoted to the pathology, epidemiology, prevention, treatment and control of the neglected tropical diseases (NTDs), as well as relevant public policy.
The NTDs are defined as a group of poverty-promoting chronic infectious diseases, which primarily occur in rural areas and poor urban areas of low-income and middle-income countries. Their impact on child health and development, pregnancy, and worker productivity, as well as their stigmatizing features limit economic stability.
All aspects of these diseases are considered, including:
Pathogenesis
Clinical features
Pharmacology and treatment
Diagnosis
Epidemiology
Vector biology
Vaccinology and prevention
Demographic, ecological and social determinants
Public health and policy aspects (including cost-effectiveness analyses).