基于学习的关节空间柔性假手腕阻抗控制策略的实现。

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-09-22 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1665267
Shifa Sulaiman, Francesco Schetter, Ebrahim Shahabi, Fanny Ficuciello
{"title":"基于学习的关节空间柔性假手腕阻抗控制策略的实现。","authors":"Shifa Sulaiman, Francesco Schetter, Ebrahim Shahabi, Fanny Ficuciello","doi":"10.3389/frobt.2025.1665267","DOIUrl":null,"url":null,"abstract":"<p><p>The development of advanced control strategies for prosthetic hands is essential for improving performance and user experience. Soft prosthetic wrists pose substantial control challenges due to their compliant structures and nonlinear dynamics. This work presents a learning-based impedance control strategy for a tendon-driven soft continuum wrist, integrated with the PRISMA HAND II prosthesis, aimed at achieving stable and adaptive joint-space control. The proposed method combines physics-based modeling using Euler-Bernoulli beam theory and the Euler-Lagrange approach with a neural network trained to estimate unmodeled nonlinearities. Simulations achieved a Root Mean Square Error (RMSE) of <math><mrow><mn>3.04</mn> <mo>×</mo> <mn>1</mn> <msup><mrow><mn>0</mn></mrow> <mrow><mo>-</mo> <mn>4</mn></mrow> </msup> </mrow> </math> rad and a settling time of 3.1 s under nominal conditions. Experimental trials recorded an average RMSE of <math><mrow><mn>2.7</mn> <mo>×</mo> <mn>1</mn> <msup><mrow><mn>0</mn></mrow> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </mrow> </math> rad and confirmed the controller's ability to recover target trajectories under unknown external forces. The method supports compliant interaction, robust motion tracking, and trajectory recovery, positioning it as a viable solution for personalized prosthetic rehabilitation. Compared to traditional controllers like Sliding Mode Controller (SMC), Model Reference Adaptive Controller (MRAC), and Model Predictive Controller (MPC), the proposed method achieved superior accuracy and stability. This hybrid approach successfully balances analytical precision with data-driven adaptability, offering a promising pathway towards intelligent control in next-generation soft prosthetic systems.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1665267"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497997/pdf/","citationCount":"0","resultStr":"{\"title\":\"A learning based impedance control strategy implemented on a soft prosthetic wrist in joint-space.\",\"authors\":\"Shifa Sulaiman, Francesco Schetter, Ebrahim Shahabi, Fanny Ficuciello\",\"doi\":\"10.3389/frobt.2025.1665267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of advanced control strategies for prosthetic hands is essential for improving performance and user experience. Soft prosthetic wrists pose substantial control challenges due to their compliant structures and nonlinear dynamics. This work presents a learning-based impedance control strategy for a tendon-driven soft continuum wrist, integrated with the PRISMA HAND II prosthesis, aimed at achieving stable and adaptive joint-space control. The proposed method combines physics-based modeling using Euler-Bernoulli beam theory and the Euler-Lagrange approach with a neural network trained to estimate unmodeled nonlinearities. Simulations achieved a Root Mean Square Error (RMSE) of <math><mrow><mn>3.04</mn> <mo>×</mo> <mn>1</mn> <msup><mrow><mn>0</mn></mrow> <mrow><mo>-</mo> <mn>4</mn></mrow> </msup> </mrow> </math> rad and a settling time of 3.1 s under nominal conditions. Experimental trials recorded an average RMSE of <math><mrow><mn>2.7</mn> <mo>×</mo> <mn>1</mn> <msup><mrow><mn>0</mn></mrow> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </mrow> </math> rad and confirmed the controller's ability to recover target trajectories under unknown external forces. The method supports compliant interaction, robust motion tracking, and trajectory recovery, positioning it as a viable solution for personalized prosthetic rehabilitation. Compared to traditional controllers like Sliding Mode Controller (SMC), Model Reference Adaptive Controller (MRAC), and Model Predictive Controller (MPC), the proposed method achieved superior accuracy and stability. This hybrid approach successfully balances analytical precision with data-driven adaptability, offering a promising pathway towards intelligent control in next-generation soft prosthetic systems.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"12 \",\"pages\":\"1665267\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2025.1665267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1665267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

开发先进的假肢控制策略对于提高假肢的性能和用户体验至关重要。柔性假手腕由于其柔性结构和非线性动力学特性,给控制带来了巨大的挑战。本研究提出了一种基于学习的阻抗控制策略,用于肌腱驱动的软连续腕关节,与PRISMA HAND II假体相结合,旨在实现稳定和自适应的关节空间控制。该方法结合了基于物理的欧拉-伯努利梁理论建模和欧拉-拉格朗日方法,并训练了一个神经网络来估计未建模的非线性。仿真结果表明,在标准条件下,均方根误差(RMSE)为3.04 × 10 - 4 rad,沉降时间为3.1 s。实验记录的平均RMSE为2.7 × 10 - 2 rad,并证实了控制器在未知外力下恢复目标轨迹的能力。该方法支持柔性交互、鲁棒运动跟踪和轨迹恢复,将其定位为个性化假肢康复的可行解决方案。与滑模控制器(SMC)、模型参考自适应控制器(MRAC)和模型预测控制器(MPC)等传统控制器相比,该方法具有更高的精度和稳定性。这种混合方法成功地平衡了分析精度和数据驱动的适应性,为下一代软假肢系统的智能控制提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A learning based impedance control strategy implemented on a soft prosthetic wrist in joint-space.

The development of advanced control strategies for prosthetic hands is essential for improving performance and user experience. Soft prosthetic wrists pose substantial control challenges due to their compliant structures and nonlinear dynamics. This work presents a learning-based impedance control strategy for a tendon-driven soft continuum wrist, integrated with the PRISMA HAND II prosthesis, aimed at achieving stable and adaptive joint-space control. The proposed method combines physics-based modeling using Euler-Bernoulli beam theory and the Euler-Lagrange approach with a neural network trained to estimate unmodeled nonlinearities. Simulations achieved a Root Mean Square Error (RMSE) of 3.04 × 1 0 - 4 rad and a settling time of 3.1 s under nominal conditions. Experimental trials recorded an average RMSE of 2.7 × 1 0 - 2 rad and confirmed the controller's ability to recover target trajectories under unknown external forces. The method supports compliant interaction, robust motion tracking, and trajectory recovery, positioning it as a viable solution for personalized prosthetic rehabilitation. Compared to traditional controllers like Sliding Mode Controller (SMC), Model Reference Adaptive Controller (MRAC), and Model Predictive Controller (MPC), the proposed method achieved superior accuracy and stability. This hybrid approach successfully balances analytical precision with data-driven adaptability, offering a promising pathway towards intelligent control in next-generation soft prosthetic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信