核开关适体结构域需要金属三元体和阳离子配体之间的相互作用:从分子动力学模拟的金属离子诱导变构的见解。

IF 5 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2025-10-07 DOI:10.1261/rna.080619.125
Indu Negi, Stacey Wetmore
{"title":"核开关适体结构域需要金属三元体和阳离子配体之间的相互作用:从分子动力学模拟的金属离子诱导变构的见解。","authors":"Indu Negi, Stacey Wetmore","doi":"10.1261/rna.080619.125","DOIUrl":null,"url":null,"abstract":"<p><p>Riboswitches are non-coding mRNA regions that regulate gene expression by sensing small molecules. While most riboswitches turn off gene expression, guanidine-I family riboswitches enhance gene expression. Although crystal structures provide insights into the structural basis for guanidinium ion (Gdm<sup>+</sup>) sensing by the guanidine-I riboswitch aptamer (GRA) domain, the mechanistic interplay between ligand and metal ion binding, RNA conformational changes, and regulatory function remains poorly understood. Using molecular dynamics simulations, we explore the combined effects of the positively charged Gdm<sup>+</sup>, Mg<sup>2+</sup>, and K<sup>+</sup> observed in close proximity in the experimental crystal structure on the GRA structural dynamics. Our simulations reveal that the binding pocket frequently transitions between ligand bound-like and unbound-like states in the absence of divalent ions, while Mg<sup>2+</sup> stabilizes a bound-like RNA conformation. Furthermore, both Mg<sup>2+</sup> and Gdm+ facilitate K+ positioning near the binding pocket. As a result, Mg<sup>2+</sup>, Gdm<sup>+</sup>, and K<sup>+</sup> synergistically increase the structural rigidity of the GRA domain, particularly the P2-P3 junction and the 3' end near the terminator stem. This enhances localized interactions that pull the P1a and P3 domains together to make the transcriptional control region available for expression. Our proposed mechanism is fully consistent with experimental structural and biochemical (including isothermal titration calorimetry and structure-guided mutagenesis) data and rationalizes how the unique triad of ions work together to influence the conformational dynamics of the aptamer domain and riboswitch function. This information can guide future synthetic riboswitch design and the identification of novel therapeutic targets beyond static structural information.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>ykkC</i>-I Riboswitch Aptamer Domain Requires an Interplay Between Metal Triad and Cationic Ligand: Insights into Metal Ion-Induced Allostery from Molecular Dynamics Simulations.\",\"authors\":\"Indu Negi, Stacey Wetmore\",\"doi\":\"10.1261/rna.080619.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Riboswitches are non-coding mRNA regions that regulate gene expression by sensing small molecules. While most riboswitches turn off gene expression, guanidine-I family riboswitches enhance gene expression. Although crystal structures provide insights into the structural basis for guanidinium ion (Gdm<sup>+</sup>) sensing by the guanidine-I riboswitch aptamer (GRA) domain, the mechanistic interplay between ligand and metal ion binding, RNA conformational changes, and regulatory function remains poorly understood. Using molecular dynamics simulations, we explore the combined effects of the positively charged Gdm<sup>+</sup>, Mg<sup>2+</sup>, and K<sup>+</sup> observed in close proximity in the experimental crystal structure on the GRA structural dynamics. Our simulations reveal that the binding pocket frequently transitions between ligand bound-like and unbound-like states in the absence of divalent ions, while Mg<sup>2+</sup> stabilizes a bound-like RNA conformation. Furthermore, both Mg<sup>2+</sup> and Gdm+ facilitate K+ positioning near the binding pocket. As a result, Mg<sup>2+</sup>, Gdm<sup>+</sup>, and K<sup>+</sup> synergistically increase the structural rigidity of the GRA domain, particularly the P2-P3 junction and the 3' end near the terminator stem. This enhances localized interactions that pull the P1a and P3 domains together to make the transcriptional control region available for expression. Our proposed mechanism is fully consistent with experimental structural and biochemical (including isothermal titration calorimetry and structure-guided mutagenesis) data and rationalizes how the unique triad of ions work together to influence the conformational dynamics of the aptamer domain and riboswitch function. This information can guide future synthetic riboswitch design and the identification of novel therapeutic targets beyond static structural information.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080619.125\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080619.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核开关是非编码mRNA区域,通过感应小分子调节基因表达。虽然大多数核糖开关关闭基因表达,但胍- i家族核糖开关增强基因表达。尽管晶体结构提供了胍- 1核开关适体(GRA)结构域感知胍离子(Gdm+)的结构基础,但配体与金属离子结合、RNA构象变化和调节功能之间的机制相互作用仍然知之甚少。通过分子动力学模拟,我们探讨了实验晶体结构中近距离观察到的带正电的Gdm+、Mg2+和K+对GRA结构动力学的联合影响。我们的模拟表明,在没有二价离子的情况下,结合袋经常在配体结合和非结合状态之间转换,而Mg2+稳定了结合样RNA构象。此外,Mg2+和Gdm+都有利于K+在结合袋附近的定位。因此,Mg2+、Gdm+和K+协同增加了GRA结构域的结构刚度,特别是P2-P3结和靠近终止茎的3'端。这增强了局部相互作用,将P1a和P3结构域拉在一起,使转录控制区可用于表达。我们提出的机制与实验结构和生化(包括等温滴定量热法和结构引导诱变)数据完全一致,并合理解释了独特的三种离子如何共同作用以影响适体结构域和核糖开关功能的构象动力学。这些信息可以指导未来的合成核糖开关设计和超越静态结构信息的新治疗靶点的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ykkC-I Riboswitch Aptamer Domain Requires an Interplay Between Metal Triad and Cationic Ligand: Insights into Metal Ion-Induced Allostery from Molecular Dynamics Simulations.

Riboswitches are non-coding mRNA regions that regulate gene expression by sensing small molecules. While most riboswitches turn off gene expression, guanidine-I family riboswitches enhance gene expression. Although crystal structures provide insights into the structural basis for guanidinium ion (Gdm+) sensing by the guanidine-I riboswitch aptamer (GRA) domain, the mechanistic interplay between ligand and metal ion binding, RNA conformational changes, and regulatory function remains poorly understood. Using molecular dynamics simulations, we explore the combined effects of the positively charged Gdm+, Mg2+, and K+ observed in close proximity in the experimental crystal structure on the GRA structural dynamics. Our simulations reveal that the binding pocket frequently transitions between ligand bound-like and unbound-like states in the absence of divalent ions, while Mg2+ stabilizes a bound-like RNA conformation. Furthermore, both Mg2+ and Gdm+ facilitate K+ positioning near the binding pocket. As a result, Mg2+, Gdm+, and K+ synergistically increase the structural rigidity of the GRA domain, particularly the P2-P3 junction and the 3' end near the terminator stem. This enhances localized interactions that pull the P1a and P3 domains together to make the transcriptional control region available for expression. Our proposed mechanism is fully consistent with experimental structural and biochemical (including isothermal titration calorimetry and structure-guided mutagenesis) data and rationalizes how the unique triad of ions work together to influence the conformational dynamics of the aptamer domain and riboswitch function. This information can guide future synthetic riboswitch design and the identification of novel therapeutic targets beyond static structural information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信