{"title":"脂肪酸合酶介导的脂滴形成增强巨噬细胞对金黄色葡萄球菌的杀伤作用。","authors":"Yanping Wu, Jiaxin Shen, Shenwei Gao, Miao Li, Qingyu Weng, Kua Zheng, Chen Zhu, Zhongnan Qin, Jieyu Li, Jiafei Lou, Songmin Ying, Yinfang Wu, Zhihua Chen, Wen Li","doi":"10.1038/s41419-025-08044-7","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages play a critical role in defending against Staphylococcus aureus (S. aureus), a major human pathogen. Recently, there has been growing interest in the metabolic regulation of macrophage function; however, the specific role of lipid synthesis in macrophage activation remains poorly understood. This study demonstrates that fatty acid synthase (FASN), an enzyme integral to de novo lipogenesis, is significantly upregulated in macrophages during S. aureus infection. Notably, S. aureus engages in a functional interaction with proteasomes, inhibiting their activity through the PI3K/AKT/mTOR signaling pathway. This interaction results in reduced degradation of FASN, leading to elevated levels of this crucial enzyme. The increased expression of FASN is vital for macrophage-mediated pathogen clearance, as it facilitates the formation of lipid droplets (LDs), which in turn enhance the antimicrobial response against S. aureus, partly through the accumulation of the antimicrobial peptide CAMP. In a murine pneumonia model, deficiency of FASN correlates with increased bacterial burden, exacerbated lung inflammation, and a significant reduction in survival rates. Collectively, these findings underscore the essential role of FASN-mediated LD formation in macrophage activation and highlight potential therapeutic targets within the FASN and lipid metabolism pathways for the treatment of S. aureus pneumonia.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"715"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fatty acid synthase-mediated lipid droplet formation enhances macrophage killing of Staphylococcus aureus.\",\"authors\":\"Yanping Wu, Jiaxin Shen, Shenwei Gao, Miao Li, Qingyu Weng, Kua Zheng, Chen Zhu, Zhongnan Qin, Jieyu Li, Jiafei Lou, Songmin Ying, Yinfang Wu, Zhihua Chen, Wen Li\",\"doi\":\"10.1038/s41419-025-08044-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages play a critical role in defending against Staphylococcus aureus (S. aureus), a major human pathogen. Recently, there has been growing interest in the metabolic regulation of macrophage function; however, the specific role of lipid synthesis in macrophage activation remains poorly understood. This study demonstrates that fatty acid synthase (FASN), an enzyme integral to de novo lipogenesis, is significantly upregulated in macrophages during S. aureus infection. Notably, S. aureus engages in a functional interaction with proteasomes, inhibiting their activity through the PI3K/AKT/mTOR signaling pathway. This interaction results in reduced degradation of FASN, leading to elevated levels of this crucial enzyme. The increased expression of FASN is vital for macrophage-mediated pathogen clearance, as it facilitates the formation of lipid droplets (LDs), which in turn enhance the antimicrobial response against S. aureus, partly through the accumulation of the antimicrobial peptide CAMP. In a murine pneumonia model, deficiency of FASN correlates with increased bacterial burden, exacerbated lung inflammation, and a significant reduction in survival rates. Collectively, these findings underscore the essential role of FASN-mediated LD formation in macrophage activation and highlight potential therapeutic targets within the FASN and lipid metabolism pathways for the treatment of S. aureus pneumonia.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"16 1\",\"pages\":\"715\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-025-08044-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-08044-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Macrophages play a critical role in defending against Staphylococcus aureus (S. aureus), a major human pathogen. Recently, there has been growing interest in the metabolic regulation of macrophage function; however, the specific role of lipid synthesis in macrophage activation remains poorly understood. This study demonstrates that fatty acid synthase (FASN), an enzyme integral to de novo lipogenesis, is significantly upregulated in macrophages during S. aureus infection. Notably, S. aureus engages in a functional interaction with proteasomes, inhibiting their activity through the PI3K/AKT/mTOR signaling pathway. This interaction results in reduced degradation of FASN, leading to elevated levels of this crucial enzyme. The increased expression of FASN is vital for macrophage-mediated pathogen clearance, as it facilitates the formation of lipid droplets (LDs), which in turn enhance the antimicrobial response against S. aureus, partly through the accumulation of the antimicrobial peptide CAMP. In a murine pneumonia model, deficiency of FASN correlates with increased bacterial burden, exacerbated lung inflammation, and a significant reduction in survival rates. Collectively, these findings underscore the essential role of FASN-mediated LD formation in macrophage activation and highlight potential therapeutic targets within the FASN and lipid metabolism pathways for the treatment of S. aureus pneumonia.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism