pdk4驱动的乳酸积累促进LPCAT2的乳酸化,加剧败血症引起的急性肺损伤。

IF 15.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yifan Deng, Yuetan Qiu, Xiang Li, Ting Gong, Jinyan Guo, Haoxuan Liang, Ziyi Yuan, Ziqing Hei, Xuedi Zhang, Youtan Liu
{"title":"pdk4驱动的乳酸积累促进LPCAT2的乳酸化,加剧败血症引起的急性肺损伤。","authors":"Yifan Deng, Yuetan Qiu, Xiang Li, Ting Gong, Jinyan Guo, Haoxuan Liang, Ziyi Yuan, Ziqing Hei, Xuedi Zhang, Youtan Liu","doi":"10.1038/s41418-025-01585-6","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated glycolysis in lung tissue is a hallmark of sepsis-induced acute lung injury (SI-ALI), yet the role of glycolytic reprogramming and lactate-derived protein modifications in damaging epithelial cells remains poorly understood. In this study, we reveal that PDK4-driven glycolytic reprogramming promotes excessive lactate production in lung tissue during SI-ALI. Mechanistically, AARS1 in epithelial cells selectively enhances lactylation modification at the K375 site of LPCAT2, which suppresses STAT1 acetylation and facilitates STAT1 phosphorylation, nuclear translocation, and transcriptional repression of SLC7A11. This cascade ultimately triggers epithelial cells ferroptosis. Pharmacological inhibition of PDK4 attenuates lactate accumulation and LPCAT2 lactylation, thereby restoring STAT1 acetylation and SLC7A11 expression. Furthermore, AARS1 knockdown or mutation of the LPCAT2-K375 lactylation site rescues STAT1-mediated SLC7A11 suppression and mitigates ferroptosis in vitro and septic mice. Our findings revealed that elevated expression of PDK4 is a critical factor contributing to the increased lactate production in lung tissue during sepsis, and established a novel LPCAT2-K375/STAT1/SLC7A11 axis driving epithelial cells ferroptosis in SI-ALI, highlighting the crosstalk between metabolic reprogramming, post-translational modifications (PTM), and ferroptosis. Targeting the PDK4 or LPCAT2 lactylation may offer therapeutic potential for SI-ALI. In sepsis-induced acute lung injury (SI-ALI), PDK4 hyperactivation drives excessive lactate production in epithelial cells, triggering AARS1/HDAC9-mediated LPCAT2 lactylation. This modification suppresses STAT1 acetylation while enhancing phosphorylation, driving its nuclear translocation and subsequent SLC7A11 transcriptional downregulation. The resultant glutathione synthesis deficiency promotes ferroptosis, exacerbating SI-ALI progression.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":15.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDK4-driven lactate accumulation facilitates LPCAT2 lactylation to exacerbate sepsis-induced acute lung injury.\",\"authors\":\"Yifan Deng, Yuetan Qiu, Xiang Li, Ting Gong, Jinyan Guo, Haoxuan Liang, Ziyi Yuan, Ziqing Hei, Xuedi Zhang, Youtan Liu\",\"doi\":\"10.1038/s41418-025-01585-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elevated glycolysis in lung tissue is a hallmark of sepsis-induced acute lung injury (SI-ALI), yet the role of glycolytic reprogramming and lactate-derived protein modifications in damaging epithelial cells remains poorly understood. In this study, we reveal that PDK4-driven glycolytic reprogramming promotes excessive lactate production in lung tissue during SI-ALI. Mechanistically, AARS1 in epithelial cells selectively enhances lactylation modification at the K375 site of LPCAT2, which suppresses STAT1 acetylation and facilitates STAT1 phosphorylation, nuclear translocation, and transcriptional repression of SLC7A11. This cascade ultimately triggers epithelial cells ferroptosis. Pharmacological inhibition of PDK4 attenuates lactate accumulation and LPCAT2 lactylation, thereby restoring STAT1 acetylation and SLC7A11 expression. Furthermore, AARS1 knockdown or mutation of the LPCAT2-K375 lactylation site rescues STAT1-mediated SLC7A11 suppression and mitigates ferroptosis in vitro and septic mice. Our findings revealed that elevated expression of PDK4 is a critical factor contributing to the increased lactate production in lung tissue during sepsis, and established a novel LPCAT2-K375/STAT1/SLC7A11 axis driving epithelial cells ferroptosis in SI-ALI, highlighting the crosstalk between metabolic reprogramming, post-translational modifications (PTM), and ferroptosis. Targeting the PDK4 or LPCAT2 lactylation may offer therapeutic potential for SI-ALI. In sepsis-induced acute lung injury (SI-ALI), PDK4 hyperactivation drives excessive lactate production in epithelial cells, triggering AARS1/HDAC9-mediated LPCAT2 lactylation. This modification suppresses STAT1 acetylation while enhancing phosphorylation, driving its nuclear translocation and subsequent SLC7A11 transcriptional downregulation. The resultant glutathione synthesis deficiency promotes ferroptosis, exacerbating SI-ALI progression.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.4000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-025-01585-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01585-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺组织糖酵解升高是败血症诱导的急性肺损伤(SI-ALI)的标志,然而糖酵解重编程和乳酸衍生蛋白修饰在损伤上皮细胞中的作用仍然知之甚少。在这项研究中,我们揭示了pdk4驱动的糖酵解重编程促进了SI-ALI期间肺组织中过量的乳酸生成。在机制上,上皮细胞中的AARS1选择性地增强LPCAT2 K375位点的乳酸化修饰,从而抑制STAT1的乙酰化,促进STAT1磷酸化、核易位和SLC7A11的转录抑制。这个级联最终触发上皮细胞铁下垂。药物抑制PDK4可减少乳酸积累和LPCAT2的乳酸化,从而恢复STAT1乙酰化和SLC7A11的表达。此外,在体外和脓毒症小鼠中,AARS1敲低或突变LPCAT2-K375乳酸化位点可挽救stat1介导的SLC7A11抑制,并减轻铁下垂。我们的研究结果显示,PDK4的表达升高是脓毒症期间肺组织乳酸生成增加的一个关键因素,并建立了一个新的LPCAT2-K375/STAT1/SLC7A11轴驱动SI-ALI上皮细胞铁死亡,突出了代谢重编程、翻译后修饰(PTM)和铁死亡之间的串串。靶向PDK4或LPCAT2乳酸化可能为SI-ALI提供治疗潜力。在脓毒症诱导的急性肺损伤(SI-ALI)中,PDK4过度激活驱动上皮细胞过量的乳酸生成,触发AARS1/ hdac9介导的LPCAT2乳酸化。这种修饰抑制STAT1乙酰化,同时增强磷酸化,驱动其核易位和随后的SLC7A11转录下调。由此产生的谷胱甘肽合成缺乏促进铁下垂,加剧SI-ALI的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDK4-driven lactate accumulation facilitates LPCAT2 lactylation to exacerbate sepsis-induced acute lung injury.

Elevated glycolysis in lung tissue is a hallmark of sepsis-induced acute lung injury (SI-ALI), yet the role of glycolytic reprogramming and lactate-derived protein modifications in damaging epithelial cells remains poorly understood. In this study, we reveal that PDK4-driven glycolytic reprogramming promotes excessive lactate production in lung tissue during SI-ALI. Mechanistically, AARS1 in epithelial cells selectively enhances lactylation modification at the K375 site of LPCAT2, which suppresses STAT1 acetylation and facilitates STAT1 phosphorylation, nuclear translocation, and transcriptional repression of SLC7A11. This cascade ultimately triggers epithelial cells ferroptosis. Pharmacological inhibition of PDK4 attenuates lactate accumulation and LPCAT2 lactylation, thereby restoring STAT1 acetylation and SLC7A11 expression. Furthermore, AARS1 knockdown or mutation of the LPCAT2-K375 lactylation site rescues STAT1-mediated SLC7A11 suppression and mitigates ferroptosis in vitro and septic mice. Our findings revealed that elevated expression of PDK4 is a critical factor contributing to the increased lactate production in lung tissue during sepsis, and established a novel LPCAT2-K375/STAT1/SLC7A11 axis driving epithelial cells ferroptosis in SI-ALI, highlighting the crosstalk between metabolic reprogramming, post-translational modifications (PTM), and ferroptosis. Targeting the PDK4 or LPCAT2 lactylation may offer therapeutic potential for SI-ALI. In sepsis-induced acute lung injury (SI-ALI), PDK4 hyperactivation drives excessive lactate production in epithelial cells, triggering AARS1/HDAC9-mediated LPCAT2 lactylation. This modification suppresses STAT1 acetylation while enhancing phosphorylation, driving its nuclear translocation and subsequent SLC7A11 transcriptional downregulation. The resultant glutathione synthesis deficiency promotes ferroptosis, exacerbating SI-ALI progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信