探索自支撑激光诱导石墨烯-氧化钴电极用于碱性电解的潜力。

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Otávio A L Alves, Thiago A S Soares, Lara F Loguercio, Felipe L N Sousa, Anderson Thesing, Marcelo Navarro, Giovanna Machado
{"title":"探索自支撑激光诱导石墨烯-氧化钴电极用于碱性电解的潜力。","authors":"Otávio A L Alves, Thiago A S Soares, Lara F Loguercio, Felipe L N Sousa, Anderson Thesing, Marcelo Navarro, Giovanna Machado","doi":"10.1002/cphc.202500469","DOIUrl":null,"url":null,"abstract":"<p><p>A simple, fast, and cost-effective strategy to fabricate self-supported electrodes based on laser-induced graphene (LIG) decorated with cobalt oxide (LIG-CoO) for oxygen evolution reaction (OER) in alkaline media is reported. The method involves a dual-ablation process directly on commercial Kapton tape, eliminating the need for binders, metal current collectors, or post-synthesis thermal/chemical treatments. Raman, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analyses confirm the formation of a graphitic and porous LIG network decorated with CoO nanostructures. At the optimal cobalt precursor concentration, the electrochemical evaluation reveals superior OER achieved with an overpotential of 388.0 mV at a current density of 10.0 mA cm<sup>-2</sup> and a Tafel slope of 65.8 mV dec<sup>-</sup> <sup>1</sup>. Electrochemical impedance spectroscopy reveals enhanced charge transfer and increased electrochemical surface area with CoO loading. Notably, synchrotron XPS analysis shows compositional gradients and oxidation states across the electrode depth, confirming Co<sup>2+</sup> stabilization and surface oxygenation. The proposed fabrication route demonstrates significant potential for scalable production of integrated electrocatalytic materials, addressing the increasing demands for green energy solutions.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500469"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential of Self-Supported Laser-Induced Graphene-Cobalt Oxide Electrodes for Alkaline Electrolysis.\",\"authors\":\"Otávio A L Alves, Thiago A S Soares, Lara F Loguercio, Felipe L N Sousa, Anderson Thesing, Marcelo Navarro, Giovanna Machado\",\"doi\":\"10.1002/cphc.202500469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A simple, fast, and cost-effective strategy to fabricate self-supported electrodes based on laser-induced graphene (LIG) decorated with cobalt oxide (LIG-CoO) for oxygen evolution reaction (OER) in alkaline media is reported. The method involves a dual-ablation process directly on commercial Kapton tape, eliminating the need for binders, metal current collectors, or post-synthesis thermal/chemical treatments. Raman, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analyses confirm the formation of a graphitic and porous LIG network decorated with CoO nanostructures. At the optimal cobalt precursor concentration, the electrochemical evaluation reveals superior OER achieved with an overpotential of 388.0 mV at a current density of 10.0 mA cm<sup>-2</sup> and a Tafel slope of 65.8 mV dec<sup>-</sup> <sup>1</sup>. Electrochemical impedance spectroscopy reveals enhanced charge transfer and increased electrochemical surface area with CoO loading. Notably, synchrotron XPS analysis shows compositional gradients and oxidation states across the electrode depth, confirming Co<sup>2+</sup> stabilization and surface oxygenation. The proposed fabrication route demonstrates significant potential for scalable production of integrated electrocatalytic materials, addressing the increasing demands for green energy solutions.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202500469\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500469\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500469","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

报道了一种在碱性介质中制备出用于析氧反应(OER)的激光诱导氧化钴修饰石墨烯(LIG)自支撑电极的简单、快速、经济的方法。该方法涉及直接在商用卡普顿胶带上进行双烧蚀过程,无需粘合剂,金属集流器或合成后的热/化学处理。拉曼、扫描电镜、x射线光电子能谱(XPS)和x射线衍射分析证实了由CoO纳米结构修饰的石墨和多孔LIG网络的形成。在最佳钴前驱体浓度下,电化学评价表明,在电流密度为10.0 mA cm-2时,过电位为388.0 mV, Tafel斜率为65.8 mV dec- 1, OER较优。电化学阻抗谱显示,CoO负载增强了电荷转移,增加了电化学表面积。值得注意的是,同步加速器XPS分析显示了电极深度上的成分梯度和氧化态,证实了Co2+的稳定和表面氧化。提出的制造路线显示了集成电催化材料的可扩展生产的巨大潜力,解决了对绿色能源解决方案日益增长的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Potential of Self-Supported Laser-Induced Graphene-Cobalt Oxide Electrodes for Alkaline Electrolysis.

A simple, fast, and cost-effective strategy to fabricate self-supported electrodes based on laser-induced graphene (LIG) decorated with cobalt oxide (LIG-CoO) for oxygen evolution reaction (OER) in alkaline media is reported. The method involves a dual-ablation process directly on commercial Kapton tape, eliminating the need for binders, metal current collectors, or post-synthesis thermal/chemical treatments. Raman, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analyses confirm the formation of a graphitic and porous LIG network decorated with CoO nanostructures. At the optimal cobalt precursor concentration, the electrochemical evaluation reveals superior OER achieved with an overpotential of 388.0 mV at a current density of 10.0 mA cm-2 and a Tafel slope of 65.8 mV dec- 1. Electrochemical impedance spectroscopy reveals enhanced charge transfer and increased electrochemical surface area with CoO loading. Notably, synchrotron XPS analysis shows compositional gradients and oxidation states across the electrode depth, confirming Co2+ stabilization and surface oxygenation. The proposed fabrication route demonstrates significant potential for scalable production of integrated electrocatalytic materials, addressing the increasing demands for green energy solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信