Joseph C Iovine, Benjamin T Garrett, Nathan N Alder
{"title":"侧脂质填料支配着苯乙烯-马来酸共聚物的双层增溶:含心磷脂膜的案例研究。","authors":"Joseph C Iovine, Benjamin T Garrett, Nathan N Alder","doi":"10.1016/j.bbamem.2025.184470","DOIUrl":null,"url":null,"abstract":"<p><p>Styrene-maleic acid (SMA) copolymers are powerful tools for the detergent-free solubilization of biological membranes. Yet the influence of specific lipids on SMA activity remains an open question. Here, we examined the effects of the mitochondria-specific phospholipid cardiolipin on SMA-mediated membrane solubilization and its ability to form SMA-bound nanodiscs. To this end, we prepared a series of model membranes with cardiolipin and other test lipids with comparable surface charge and lateral packing characteristics. Using multiple independent experimental approaches, we found that cardiolipin inhibited SMA solubilization. Our results indicate that this effect was not attributable to headgroup charge effects, but related to cardiolipin-induced increase in lateral packing pressure at the interfacial region. Reduction of this lateral packing pressure using bilayer-active alcohols partially restored SMA solubilization. Our results highlight the importance of lipid geometry and packing in SMA nanodisc formation and could help guide the design of copolymers tailored to specific membranes.</p>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":" ","pages":"184470"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral lipid packing governs bilayer solubilization by styrene-maleic acid copolymers: a case study with cardiolipin-containing membranes.\",\"authors\":\"Joseph C Iovine, Benjamin T Garrett, Nathan N Alder\",\"doi\":\"10.1016/j.bbamem.2025.184470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Styrene-maleic acid (SMA) copolymers are powerful tools for the detergent-free solubilization of biological membranes. Yet the influence of specific lipids on SMA activity remains an open question. Here, we examined the effects of the mitochondria-specific phospholipid cardiolipin on SMA-mediated membrane solubilization and its ability to form SMA-bound nanodiscs. To this end, we prepared a series of model membranes with cardiolipin and other test lipids with comparable surface charge and lateral packing characteristics. Using multiple independent experimental approaches, we found that cardiolipin inhibited SMA solubilization. Our results indicate that this effect was not attributable to headgroup charge effects, but related to cardiolipin-induced increase in lateral packing pressure at the interfacial region. Reduction of this lateral packing pressure using bilayer-active alcohols partially restored SMA solubilization. Our results highlight the importance of lipid geometry and packing in SMA nanodisc formation and could help guide the design of copolymers tailored to specific membranes.</p>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\" \",\"pages\":\"184470\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbamem.2025.184470\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbamem.2025.184470","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lateral lipid packing governs bilayer solubilization by styrene-maleic acid copolymers: a case study with cardiolipin-containing membranes.
Styrene-maleic acid (SMA) copolymers are powerful tools for the detergent-free solubilization of biological membranes. Yet the influence of specific lipids on SMA activity remains an open question. Here, we examined the effects of the mitochondria-specific phospholipid cardiolipin on SMA-mediated membrane solubilization and its ability to form SMA-bound nanodiscs. To this end, we prepared a series of model membranes with cardiolipin and other test lipids with comparable surface charge and lateral packing characteristics. Using multiple independent experimental approaches, we found that cardiolipin inhibited SMA solubilization. Our results indicate that this effect was not attributable to headgroup charge effects, but related to cardiolipin-induced increase in lateral packing pressure at the interfacial region. Reduction of this lateral packing pressure using bilayer-active alcohols partially restored SMA solubilization. Our results highlight the importance of lipid geometry and packing in SMA nanodisc formation and could help guide the design of copolymers tailored to specific membranes.
期刊介绍:
BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.