团队合作:(自身)免疫中转录后机制、表观遗传学和代谢的相互作用。

IF 3.7 3区 医学 Q2 IMMUNOLOGY
Francesca Rossi, Martin Turner
{"title":"团队合作:(自身)免疫中转录后机制、表观遗传学和代谢的相互作用。","authors":"Francesca Rossi,&nbsp;Martin Turner","doi":"10.1002/eji.70064","DOIUrl":null,"url":null,"abstract":"<p>Changes in transcript abundance and isoforms, mediated by epigenetic and post-transcriptional mechanisms, are a hallmark of the development, activation, and effector functions of immune cells. How epigenetic and post-transcriptional processes are orchestrated to regulate transcription and pre-mRNA processing, and their interplay with metabolism, is emerging as important for immunity. DNA and histone modifications recruit RNA-binding proteins (RBPs) to mediate co-transcriptional RNA processing at specific chromatin <i>loci</i>. Simultaneously, RBPs influence the deposition of epigenetic modifications by regulating the expression of chromatin-modifying enzymes and enzymes that control the amounts of metabolites. These are used as substrates by chromatin-modifying enzymes and can influence RBP activity; thus, modulation of metabolic pathways represents a mechanism to regulate the epigenetic landscape and pre-mRNA processing. A body of work identifies emerging regulatory principles that address the interplay between epigenetics and RBPs in the nucleus, and of cytoplasmic post-transcriptional mechanisms that regulate metabolism and epigenetics. In this review, we focus on the interconnections between RBP-mediated processes, chromatin modifications, and metabolic pathways, highlighting the role that such circuits have in T- and B-lymphocytes, and in autoimmunity.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505208/pdf/","citationCount":"0","resultStr":"{\"title\":\"TEAMwork: Interplay of Post-Transcriptional Mechanisms, Epigenetics and Metabolism in (Auto-)Immunity\",\"authors\":\"Francesca Rossi,&nbsp;Martin Turner\",\"doi\":\"10.1002/eji.70064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changes in transcript abundance and isoforms, mediated by epigenetic and post-transcriptional mechanisms, are a hallmark of the development, activation, and effector functions of immune cells. How epigenetic and post-transcriptional processes are orchestrated to regulate transcription and pre-mRNA processing, and their interplay with metabolism, is emerging as important for immunity. DNA and histone modifications recruit RNA-binding proteins (RBPs) to mediate co-transcriptional RNA processing at specific chromatin <i>loci</i>. Simultaneously, RBPs influence the deposition of epigenetic modifications by regulating the expression of chromatin-modifying enzymes and enzymes that control the amounts of metabolites. These are used as substrates by chromatin-modifying enzymes and can influence RBP activity; thus, modulation of metabolic pathways represents a mechanism to regulate the epigenetic landscape and pre-mRNA processing. A body of work identifies emerging regulatory principles that address the interplay between epigenetics and RBPs in the nucleus, and of cytoplasmic post-transcriptional mechanisms that regulate metabolism and epigenetics. In this review, we focus on the interconnections between RBP-mediated processes, chromatin modifications, and metabolic pathways, highlighting the role that such circuits have in T- and B-lymphocytes, and in autoimmunity.</p>\",\"PeriodicalId\":165,\"journal\":{\"name\":\"European Journal of Immunology\",\"volume\":\"55 10\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eji.70064\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.70064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转录物丰度和同工型的变化是由表观遗传和转录后机制介导的,是免疫细胞发育、激活和效应功能的标志。表观遗传和转录后过程如何协调调节转录和mrna前加工,以及它们与代谢的相互作用,对免疫至关重要。DNA和组蛋白修饰招募RNA结合蛋白(rbp)介导特定染色质位点的共转录RNA加工。同时,rbp通过调节染色质修饰酶和控制代谢物数量的酶的表达来影响表观遗传修饰的沉积。它们被染色质修饰酶用作底物,可以影响RBP活性;因此,代谢途径的调节代表了一种调节表观遗传景观和前mrna加工的机制。大量的工作确定了新兴的调控原则,这些原则解决了表观遗传学和细胞核中rbp之间的相互作用,以及调节代谢和表观遗传学的细胞质转录后机制。在这篇综述中,我们关注rbp介导的过程、染色质修饰和代谢途径之间的相互联系,强调这些回路在T淋巴细胞和b淋巴细胞以及自身免疫中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TEAMwork: Interplay of Post-Transcriptional Mechanisms, Epigenetics and Metabolism in (Auto-)Immunity

TEAMwork: Interplay of Post-Transcriptional Mechanisms, Epigenetics and Metabolism in (Auto-)Immunity

Changes in transcript abundance and isoforms, mediated by epigenetic and post-transcriptional mechanisms, are a hallmark of the development, activation, and effector functions of immune cells. How epigenetic and post-transcriptional processes are orchestrated to regulate transcription and pre-mRNA processing, and their interplay with metabolism, is emerging as important for immunity. DNA and histone modifications recruit RNA-binding proteins (RBPs) to mediate co-transcriptional RNA processing at specific chromatin loci. Simultaneously, RBPs influence the deposition of epigenetic modifications by regulating the expression of chromatin-modifying enzymes and enzymes that control the amounts of metabolites. These are used as substrates by chromatin-modifying enzymes and can influence RBP activity; thus, modulation of metabolic pathways represents a mechanism to regulate the epigenetic landscape and pre-mRNA processing. A body of work identifies emerging regulatory principles that address the interplay between epigenetics and RBPs in the nucleus, and of cytoplasmic post-transcriptional mechanisms that regulate metabolism and epigenetics. In this review, we focus on the interconnections between RBP-mediated processes, chromatin modifications, and metabolic pathways, highlighting the role that such circuits have in T- and B-lymphocytes, and in autoimmunity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.70%
发文量
224
审稿时长
2 months
期刊介绍: The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信