{"title":"模拟生物膜生长的拟线性退化进化系统:适定性和定性","authors":"K. Mitra, S. Sonner","doi":"10.1002/mma.11221","DOIUrl":null,"url":null,"abstract":"<p>We analyze nonlinear degenerate coupled partial differential equation (PDE)-PDE and PDE-ordinary differential equation (ODE) systems that arise, for example, in the modelling of biofilm growth. One of the equations, describing the evolution of a biomass density, exhibits degenerate and singular diffusion. The other equations are either of advection-reaction-diffusion type or ODEs. Under very general assumptions, the existence of weak solutions is proven by considering regularized systems, deriving uniform bounds, and using fixed point arguments. Assuming additional structural assumptions we also prove the uniqueness of solutions. Global-in-time well-posedness is established for Dirichlet and mixed boundary conditions, whereas, only local well-posedness can be shown for homogeneous Neumann boundary conditions. Using a suitable barrier function and comparison theorems, we formulate sufficient conditions for finite-time blow-up or uniform boundedness of solutions. Finally, we show that solutions of the degenerate parabolic equation inherit additional global spatial regularity if the diffusion coefficient has a power-law growth.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 16","pages":"14890-14908"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.11221","citationCount":"0","resultStr":"{\"title\":\"Quasilinear Degenerate Evolution Systems Modelling Biofilm Growth: Well-Posedness and Qualitative Properties\",\"authors\":\"K. Mitra, S. Sonner\",\"doi\":\"10.1002/mma.11221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze nonlinear degenerate coupled partial differential equation (PDE)-PDE and PDE-ordinary differential equation (ODE) systems that arise, for example, in the modelling of biofilm growth. One of the equations, describing the evolution of a biomass density, exhibits degenerate and singular diffusion. The other equations are either of advection-reaction-diffusion type or ODEs. Under very general assumptions, the existence of weak solutions is proven by considering regularized systems, deriving uniform bounds, and using fixed point arguments. Assuming additional structural assumptions we also prove the uniqueness of solutions. Global-in-time well-posedness is established for Dirichlet and mixed boundary conditions, whereas, only local well-posedness can be shown for homogeneous Neumann boundary conditions. Using a suitable barrier function and comparison theorems, we formulate sufficient conditions for finite-time blow-up or uniform boundedness of solutions. Finally, we show that solutions of the degenerate parabolic equation inherit additional global spatial regularity if the diffusion coefficient has a power-law growth.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 16\",\"pages\":\"14890-14908\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.11221\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.11221\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.11221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Quasilinear Degenerate Evolution Systems Modelling Biofilm Growth: Well-Posedness and Qualitative Properties
We analyze nonlinear degenerate coupled partial differential equation (PDE)-PDE and PDE-ordinary differential equation (ODE) systems that arise, for example, in the modelling of biofilm growth. One of the equations, describing the evolution of a biomass density, exhibits degenerate and singular diffusion. The other equations are either of advection-reaction-diffusion type or ODEs. Under very general assumptions, the existence of weak solutions is proven by considering regularized systems, deriving uniform bounds, and using fixed point arguments. Assuming additional structural assumptions we also prove the uniqueness of solutions. Global-in-time well-posedness is established for Dirichlet and mixed boundary conditions, whereas, only local well-posedness can be shown for homogeneous Neumann boundary conditions. Using a suitable barrier function and comparison theorems, we formulate sufficient conditions for finite-time blow-up or uniform boundedness of solutions. Finally, we show that solutions of the degenerate parabolic equation inherit additional global spatial regularity if the diffusion coefficient has a power-law growth.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.