{"title":"基于Moore-Gibson-Thompson模型的正交各向异性微极光热弹性介质的基本解和格林函数研究","authors":"Rajneesh Kumar, Nidhi Sharma, Vineeta Rani","doi":"10.1134/S0025654425601831","DOIUrl":null,"url":null,"abstract":"<p>In the present study, we examine the fundamental solution and Green’s function in a semi-infinite orthotropic micropolar photothermoelastic medium based on Moore-Gibson-Thompson heat equation (MPMGT). To achieve this, we first translate the governing equations into two dimensions and execute the dimensionless quantities, and then we employ operator theory to derive the general solution for the MPMGT model. The fundamental solution and Green’s function for a steady point heat source on the surface and in the interior of a semi-infinite medium of the assumed model have been computed from the general solution using newly introduced harmonic functions. To investigate the micropolarity effect, displacement, stress, temperature, carrier density distribution, micro rotation and couple stress are computed numerically and presented as graphs. Specific cases are inferred from the current investigation and compared with the previously established results. The obtained results have applications in the material and engineering sciences, as well as in the different semiconductor elements during the coupled photothermoelastic impact.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"60 4","pages":"3058 - 3094"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Fundamental Solution and Green’s Function in Orthotropic Micropolar Photothermoelastic Media Based on Moore-Gibson-Thompson Model\",\"authors\":\"Rajneesh Kumar, Nidhi Sharma, Vineeta Rani\",\"doi\":\"10.1134/S0025654425601831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present study, we examine the fundamental solution and Green’s function in a semi-infinite orthotropic micropolar photothermoelastic medium based on Moore-Gibson-Thompson heat equation (MPMGT). To achieve this, we first translate the governing equations into two dimensions and execute the dimensionless quantities, and then we employ operator theory to derive the general solution for the MPMGT model. The fundamental solution and Green’s function for a steady point heat source on the surface and in the interior of a semi-infinite medium of the assumed model have been computed from the general solution using newly introduced harmonic functions. To investigate the micropolarity effect, displacement, stress, temperature, carrier density distribution, micro rotation and couple stress are computed numerically and presented as graphs. Specific cases are inferred from the current investigation and compared with the previously established results. The obtained results have applications in the material and engineering sciences, as well as in the different semiconductor elements during the coupled photothermoelastic impact.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"60 4\",\"pages\":\"3058 - 3094\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654425601831\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654425601831","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
A Study of Fundamental Solution and Green’s Function in Orthotropic Micropolar Photothermoelastic Media Based on Moore-Gibson-Thompson Model
In the present study, we examine the fundamental solution and Green’s function in a semi-infinite orthotropic micropolar photothermoelastic medium based on Moore-Gibson-Thompson heat equation (MPMGT). To achieve this, we first translate the governing equations into two dimensions and execute the dimensionless quantities, and then we employ operator theory to derive the general solution for the MPMGT model. The fundamental solution and Green’s function for a steady point heat source on the surface and in the interior of a semi-infinite medium of the assumed model have been computed from the general solution using newly introduced harmonic functions. To investigate the micropolarity effect, displacement, stress, temperature, carrier density distribution, micro rotation and couple stress are computed numerically and presented as graphs. Specific cases are inferred from the current investigation and compared with the previously established results. The obtained results have applications in the material and engineering sciences, as well as in the different semiconductor elements during the coupled photothermoelastic impact.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.