在Bring曲线上计算代数Belyi函数

IF 0.5 4区 数学 Q3 MATHEMATICS
Madoka Horie, Takuya Yamauchi
{"title":"在Bring曲线上计算代数Belyi函数","authors":"Madoka Horie,&nbsp;Takuya Yamauchi","doi":"10.1007/s00013-025-02174-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we explicitly compute two kinds of algebraic Belyi functions on Bring’s curve. One is related to a congruence subgroup of <span>\\(\\textrm{SL}_2({\\mathbb {Z}})\\)</span> and the other is related to a congruence subgroup of the triangle group <span>\\(\\Delta (2,4,5)\\subset \\textrm{SL}_2({\\mathbb {R}}).\\)</span> To carry out the computation, we use elliptic cusp forms of weight 2 for the former case and the automorphism group of Bring’s curve for the latter case. We also discuss a suitable base field (a number field) for describing isomorphisms between Hulek–Craig’s curve, Bring’s curve, and another algebraic model obtained as a modular curve.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 5","pages":"469 - 480"},"PeriodicalIF":0.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing algebraic Belyi functions on Bring’s curve\",\"authors\":\"Madoka Horie,&nbsp;Takuya Yamauchi\",\"doi\":\"10.1007/s00013-025-02174-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we explicitly compute two kinds of algebraic Belyi functions on Bring’s curve. One is related to a congruence subgroup of <span>\\\\(\\\\textrm{SL}_2({\\\\mathbb {Z}})\\\\)</span> and the other is related to a congruence subgroup of the triangle group <span>\\\\(\\\\Delta (2,4,5)\\\\subset \\\\textrm{SL}_2({\\\\mathbb {R}}).\\\\)</span> To carry out the computation, we use elliptic cusp forms of weight 2 for the former case and the automorphism group of Bring’s curve for the latter case. We also discuss a suitable base field (a number field) for describing isomorphisms between Hulek–Craig’s curve, Bring’s curve, and another algebraic model obtained as a modular curve.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 5\",\"pages\":\"469 - 480\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02174-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02174-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文明确地计算了Bring曲线上的两类代数Belyi函数。一个与\(\textrm{SL}_2({\mathbb {Z}})\)的同余子群有关,另一个与三角形群的同余子群有关\(\Delta (2,4,5)\subset \textrm{SL}_2({\mathbb {R}}).\)的同余子群有关。为了进行计算,我们对前者使用权值为2的椭圆尖形,对后者使用Bring曲线的自同态群。我们还讨论了描述Hulek-Craig曲线、Bring曲线和另一个作为模曲线得到的代数模型之间同构的合适基域(数域)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing algebraic Belyi functions on Bring’s curve

In this paper, we explicitly compute two kinds of algebraic Belyi functions on Bring’s curve. One is related to a congruence subgroup of \(\textrm{SL}_2({\mathbb {Z}})\) and the other is related to a congruence subgroup of the triangle group \(\Delta (2,4,5)\subset \textrm{SL}_2({\mathbb {R}}).\) To carry out the computation, we use elliptic cusp forms of weight 2 for the former case and the automorphism group of Bring’s curve for the latter case. We also discuss a suitable base field (a number field) for describing isomorphisms between Hulek–Craig’s curve, Bring’s curve, and another algebraic model obtained as a modular curve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信