相对Gromov-Witten和最大接触二次曲线

IF 0.5 4区 数学 Q3 MATHEMATICS
Giosuè Muratore
{"title":"相对Gromov-Witten和最大接触二次曲线","authors":"Giosuè Muratore","doi":"10.1007/s00013-025-02169-z","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss some properties of the relative Gromov–Witten invariants counting rational curves with maximal contact order at one point. We compute the number of Cayley’s sextactic conics to any smooth plane curve. In particular, we compute the contribution, from double covers of inflectional lines, to a certain degree two relative Gromov–Witten invariant relative to the curve.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 5","pages":"491 - 503"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Gromov–Witten and maximal contact conics\",\"authors\":\"Giosuè Muratore\",\"doi\":\"10.1007/s00013-025-02169-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss some properties of the relative Gromov–Witten invariants counting rational curves with maximal contact order at one point. We compute the number of Cayley’s sextactic conics to any smooth plane curve. In particular, we compute the contribution, from double covers of inflectional lines, to a certain degree two relative Gromov–Witten invariant relative to the curve.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 5\",\"pages\":\"491 - 503\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02169-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02169-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

讨论了在一点上具有最大接触阶的有理曲线的相对Gromov-Witten不变量的一些性质。我们计算任意光滑平面曲线的Cayley六分圆锥数。特别地,我们计算了曲折线的双重覆盖在一定程度上相对于曲线的两个相对Gromov-Witten不变量的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Relative Gromov–Witten and maximal contact conics

Relative Gromov–Witten and maximal contact conics

We discuss some properties of the relative Gromov–Witten invariants counting rational curves with maximal contact order at one point. We compute the number of Cayley’s sextactic conics to any smooth plane curve. In particular, we compute the contribution, from double covers of inflectional lines, to a certain degree two relative Gromov–Witten invariant relative to the curve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信