{"title":"另一个基本尺寸的字符理论公式","authors":"Coen del Valle","doi":"10.1007/s00013-025-02165-3","DOIUrl":null,"url":null,"abstract":"<div><p>A base for a permutation group <i>G</i> acting on a set <span>\\(\\Omega \\)</span> is a sequence <span>\\(\\mathcal {B}\\)</span> of points of <span>\\(\\Omega \\)</span> such that the pointwise stabiliser <span>\\(G_{\\mathcal {B}}\\)</span> is trivial. The base size of <i>G</i> is the size of a smallest base for <i>G</i>. Extending the results of a recent paper of the author, we prove a 2013 conjecture of Fritzsche, Külshammer, and Reiche. Moreover, we generalise this conjecture and derive an alternative character theoretic formula for the base size of a certain class of permutation groups. As a consequence of our work, a third formula for the base size of the symmetric group of degree <i>n</i> acting on the subsets of <span>\\(\\{1,2,\\dots , n\\}\\)</span> is obtained.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 5","pages":"463 - 468"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02165-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Another character theoretic formula for base size\",\"authors\":\"Coen del Valle\",\"doi\":\"10.1007/s00013-025-02165-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A base for a permutation group <i>G</i> acting on a set <span>\\\\(\\\\Omega \\\\)</span> is a sequence <span>\\\\(\\\\mathcal {B}\\\\)</span> of points of <span>\\\\(\\\\Omega \\\\)</span> such that the pointwise stabiliser <span>\\\\(G_{\\\\mathcal {B}}\\\\)</span> is trivial. The base size of <i>G</i> is the size of a smallest base for <i>G</i>. Extending the results of a recent paper of the author, we prove a 2013 conjecture of Fritzsche, Külshammer, and Reiche. Moreover, we generalise this conjecture and derive an alternative character theoretic formula for the base size of a certain class of permutation groups. As a consequence of our work, a third formula for the base size of the symmetric group of degree <i>n</i> acting on the subsets of <span>\\\\(\\\\{1,2,\\\\dots , n\\\\}\\\\)</span> is obtained.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 5\",\"pages\":\"463 - 468\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-025-02165-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02165-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02165-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
作用于集合\(\Omega \)上的置换群G的基是\(\Omega \)的点序列\(\mathcal {B}\),使得点稳定子\(G_{\mathcal {B}}\)是平凡的。G的基大小是G的最小基的大小。推广作者最近一篇论文的结果,我们证明了Fritzsche, k lshammer和Reiche在2013年的一个猜想。此外,我们推广了这一猜想,并推导了一类置换群基大小的另一个特征理论公式。作为我们工作的结果,得到了作用于\(\{1,2,\dots , n\}\)子集的n次对称群的基大小的第三个公式。
A base for a permutation group G acting on a set \(\Omega \) is a sequence \(\mathcal {B}\) of points of \(\Omega \) such that the pointwise stabiliser \(G_{\mathcal {B}}\) is trivial. The base size of G is the size of a smallest base for G. Extending the results of a recent paper of the author, we prove a 2013 conjecture of Fritzsche, Külshammer, and Reiche. Moreover, we generalise this conjecture and derive an alternative character theoretic formula for the base size of a certain class of permutation groups. As a consequence of our work, a third formula for the base size of the symmetric group of degree n acting on the subsets of \(\{1,2,\dots , n\}\) is obtained.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.