组合非线性分数阶Schrödinger方程归一化解的存在性及渐近性

IF 0.5 4区 数学 Q3 MATHEMATICS
Sijian Cheng, Wenting Zhao, Xianjiu Huang
{"title":"组合非线性分数阶Schrödinger方程归一化解的存在性及渐近性","authors":"Sijian Cheng,&nbsp;Wenting Zhao,&nbsp;Xianjiu Huang","doi":"10.1007/s00013-025-02159-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we consider the following fractional Schrödinger equations with combined nonlinearities </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (-\\Delta )^su+\\lambda u=|u|^{q-2}u+|u|^{p-2}u\\ \\ \\ \\textrm{in}\\ {\\mathbb {R}}^N,\\\\ \\int _{{\\mathbb {R}}^N}u^2\\textrm{d} x=a^2,\\\\ \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(N\\ge 2\\)</span>, <span>\\(s\\in (0,1)\\)</span>, <span>\\(a&gt;0\\)</span>, <span>\\(2&lt;q&lt;p&lt;2^{*}_{s}=\\frac{2N}{N-2s}\\)</span>, and <span>\\((-\\Delta )^s\\)</span> is the fractional Laplace operator. Under various conditions on <span>\\(q&lt;p\\)</span>, <span>\\(a&gt;0\\)</span>, we investigate the existence of ground state normalized solutions by applying variational methods. Moreover, the asymptotic behavior of mountain pass type normalized solutions is also considered. We generalize the corresponding results in Qi and Zou (J Differ Equ 375:172–205, 2023), which concerns nonlinear Schrödinger equations with combined nonlinearities, to fractional nonlinear Schrödinger equations with combined nonlinearities.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 5","pages":"545 - 560"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and asymptotic behavior of normalized solutions to fractional Schrödinger equations with combined nonlinearities\",\"authors\":\"Sijian Cheng,&nbsp;Wenting Zhao,&nbsp;Xianjiu Huang\",\"doi\":\"10.1007/s00013-025-02159-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, we consider the following fractional Schrödinger equations with combined nonlinearities </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (-\\\\Delta )^su+\\\\lambda u=|u|^{q-2}u+|u|^{p-2}u\\\\ \\\\ \\\\ \\\\textrm{in}\\\\ {\\\\mathbb {R}}^N,\\\\\\\\ \\\\int _{{\\\\mathbb {R}}^N}u^2\\\\textrm{d} x=a^2,\\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(N\\\\ge 2\\\\)</span>, <span>\\\\(s\\\\in (0,1)\\\\)</span>, <span>\\\\(a&gt;0\\\\)</span>, <span>\\\\(2&lt;q&lt;p&lt;2^{*}_{s}=\\\\frac{2N}{N-2s}\\\\)</span>, and <span>\\\\((-\\\\Delta )^s\\\\)</span> is the fractional Laplace operator. Under various conditions on <span>\\\\(q&lt;p\\\\)</span>, <span>\\\\(a&gt;0\\\\)</span>, we investigate the existence of ground state normalized solutions by applying variational methods. Moreover, the asymptotic behavior of mountain pass type normalized solutions is also considered. We generalize the corresponding results in Qi and Zou (J Differ Equ 375:172–205, 2023), which concerns nonlinear Schrödinger equations with combined nonlinearities, to fractional nonlinear Schrödinger equations with combined nonlinearities.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 5\",\"pages\":\"545 - 560\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02159-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02159-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑下列分数阶Schrödinger方程与组合非线性$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^su+\lambda u=|u|^{q-2}u+|u|^{p-2}u\ \ \ \textrm{in}\ {\mathbb {R}}^N,\\ \int _{{\mathbb {R}}^N}u^2\textrm{d} x=a^2,\\ \end{array}\right. } \end{aligned}$$,其中\(N\ge 2\), \(s\in (0,1)\), \(a>0\), \(2<q<p<2^{*}_{s}=\frac{2N}{N-2s}\),和\((-\Delta )^s\)是分数阶拉普拉斯算子。在\(q<p\), \(a>0\)上的各种条件下,我们用变分方法研究了基态归一化解的存在性。此外,还考虑了山口型归一化解的渐近性质。我们将Qi和Zou (J Differ Equ 375:172 - 205,2023)中有关非线性组合非线性Schrödinger方程的相应结果推广到分数阶非线性组合非线性Schrödinger方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and asymptotic behavior of normalized solutions to fractional Schrödinger equations with combined nonlinearities

In the present paper, we consider the following fractional Schrödinger equations with combined nonlinearities

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^su+\lambda u=|u|^{q-2}u+|u|^{p-2}u\ \ \ \textrm{in}\ {\mathbb {R}}^N,\\ \int _{{\mathbb {R}}^N}u^2\textrm{d} x=a^2,\\ \end{array}\right. } \end{aligned}$$

where \(N\ge 2\), \(s\in (0,1)\), \(a>0\), \(2<q<p<2^{*}_{s}=\frac{2N}{N-2s}\), and \((-\Delta )^s\) is the fractional Laplace operator. Under various conditions on \(q<p\), \(a>0\), we investigate the existence of ground state normalized solutions by applying variational methods. Moreover, the asymptotic behavior of mountain pass type normalized solutions is also considered. We generalize the corresponding results in Qi and Zou (J Differ Equ 375:172–205, 2023), which concerns nonlinear Schrödinger equations with combined nonlinearities, to fractional nonlinear Schrödinger equations with combined nonlinearities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信