第一斐波那契数的整数连续算术平均数

IF 0.5 4区 数学 Q3 MATHEMATICS
Florian Luca, Diego Marques
{"title":"第一斐波那契数的整数连续算术平均数","authors":"Florian Luca,&nbsp;Diego Marques","doi":"10.1007/s00013-025-02166-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we prove a conjecture of Fatehizadeh and Yaqubi regarding the arithmetic mean of the first <i>n</i> Fibonacci numbers. More precisely, we show that there are infinitely many positive integers <i>n</i> such that <span>\\(n \\mid \\sum _{i=1}^{n} F_i\\)</span> and <span>\\(n+1 \\mid \\sum _{i=1}^{n+1} F_i\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 5","pages":"505 - 511"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On integral consecutive arithmetic means of the first Fibonacci numbers\",\"authors\":\"Florian Luca,&nbsp;Diego Marques\",\"doi\":\"10.1007/s00013-025-02166-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we prove a conjecture of Fatehizadeh and Yaqubi regarding the arithmetic mean of the first <i>n</i> Fibonacci numbers. More precisely, we show that there are infinitely many positive integers <i>n</i> such that <span>\\\\(n \\\\mid \\\\sum _{i=1}^{n} F_i\\\\)</span> and <span>\\\\(n+1 \\\\mid \\\\sum _{i=1}^{n+1} F_i\\\\)</span>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 5\",\"pages\":\"505 - 511\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02166-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02166-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这个笔记中,我们证明了Fatehizadeh和Yaqubi关于前n个斐波那契数的算术平均值的一个猜想。更准确地说,我们证明有无穷多个正整数n使得\(n \mid \sum _{i=1}^{n} F_i\)和\(n+1 \mid \sum _{i=1}^{n+1} F_i\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On integral consecutive arithmetic means of the first Fibonacci numbers

In this note, we prove a conjecture of Fatehizadeh and Yaqubi regarding the arithmetic mean of the first n Fibonacci numbers. More precisely, we show that there are infinitely many positive integers n such that \(n \mid \sum _{i=1}^{n} F_i\) and \(n+1 \mid \sum _{i=1}^{n+1} F_i\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信