{"title":"第一斐波那契数的整数连续算术平均数","authors":"Florian Luca, Diego Marques","doi":"10.1007/s00013-025-02166-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we prove a conjecture of Fatehizadeh and Yaqubi regarding the arithmetic mean of the first <i>n</i> Fibonacci numbers. More precisely, we show that there are infinitely many positive integers <i>n</i> such that <span>\\(n \\mid \\sum _{i=1}^{n} F_i\\)</span> and <span>\\(n+1 \\mid \\sum _{i=1}^{n+1} F_i\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 5","pages":"505 - 511"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On integral consecutive arithmetic means of the first Fibonacci numbers\",\"authors\":\"Florian Luca, Diego Marques\",\"doi\":\"10.1007/s00013-025-02166-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we prove a conjecture of Fatehizadeh and Yaqubi regarding the arithmetic mean of the first <i>n</i> Fibonacci numbers. More precisely, we show that there are infinitely many positive integers <i>n</i> such that <span>\\\\(n \\\\mid \\\\sum _{i=1}^{n} F_i\\\\)</span> and <span>\\\\(n+1 \\\\mid \\\\sum _{i=1}^{n+1} F_i\\\\)</span>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 5\",\"pages\":\"505 - 511\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02166-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02166-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On integral consecutive arithmetic means of the first Fibonacci numbers
In this note, we prove a conjecture of Fatehizadeh and Yaqubi regarding the arithmetic mean of the first n Fibonacci numbers. More precisely, we show that there are infinitely many positive integers n such that \(n \mid \sum _{i=1}^{n} F_i\) and \(n+1 \mid \sum _{i=1}^{n+1} F_i\).
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.