Shun-Li Shang , Nigel L.E. Hew , Rushi Gong , Cillian Cockrell , Paul A. Bingham , Xiaofeng Guo , Jingjing Li , Qi-Jun Hong , Zi-Kui Liu
{"title":"通过从头算分子动力学和z熵理论实现精确的熵和熔点:在氟和氯化物熔盐中的应用","authors":"Shun-Li Shang , Nigel L.E. Hew , Rushi Gong , Cillian Cockrell , Paul A. Bingham , Xiaofeng Guo , Jingjing Li , Qi-Jun Hong , Zi-Kui Liu","doi":"10.1016/j.molliq.2025.128651","DOIUrl":null,"url":null,"abstract":"<div><div>We have recently developed a breakthrough methodology for rapidly computing entropy in both solids and liquids by integrating a multiscale entropy approach (known as zentropy theory) with molecular dynamics (MD) simulations. This approach enables entropy estimation from a single MD trajectory by analyzing the probabilities of local structural configurations and atomic distributions, effectively addressing the long-standing challenge of capturing configurational entropy, particularly for liquid. Here, we demonstrate the power of this method by predicting entropies, enthalpies, and melting points of 25 binary and ternary fluoride- and chloride-based molten salts using ab initio MD (AIMD) simulations. The remarkable agreement between our predictions and experimental data underscores the potential of this approach to transform computational thermodynamics, offering accurate, efficient, and direct predictions of thermodynamic properties across both solid and liquid phases.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"438 ","pages":"Article 128651"},"PeriodicalIF":5.2000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving accurate entropy and melting point by ab initio molecular dynamics and zentropy theory: Application to fluoride and chloride molten salts\",\"authors\":\"Shun-Li Shang , Nigel L.E. Hew , Rushi Gong , Cillian Cockrell , Paul A. Bingham , Xiaofeng Guo , Jingjing Li , Qi-Jun Hong , Zi-Kui Liu\",\"doi\":\"10.1016/j.molliq.2025.128651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have recently developed a breakthrough methodology for rapidly computing entropy in both solids and liquids by integrating a multiscale entropy approach (known as zentropy theory) with molecular dynamics (MD) simulations. This approach enables entropy estimation from a single MD trajectory by analyzing the probabilities of local structural configurations and atomic distributions, effectively addressing the long-standing challenge of capturing configurational entropy, particularly for liquid. Here, we demonstrate the power of this method by predicting entropies, enthalpies, and melting points of 25 binary and ternary fluoride- and chloride-based molten salts using ab initio MD (AIMD) simulations. The remarkable agreement between our predictions and experimental data underscores the potential of this approach to transform computational thermodynamics, offering accurate, efficient, and direct predictions of thermodynamic properties across both solid and liquid phases.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"438 \",\"pages\":\"Article 128651\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732225018288\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225018288","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Achieving accurate entropy and melting point by ab initio molecular dynamics and zentropy theory: Application to fluoride and chloride molten salts
We have recently developed a breakthrough methodology for rapidly computing entropy in both solids and liquids by integrating a multiscale entropy approach (known as zentropy theory) with molecular dynamics (MD) simulations. This approach enables entropy estimation from a single MD trajectory by analyzing the probabilities of local structural configurations and atomic distributions, effectively addressing the long-standing challenge of capturing configurational entropy, particularly for liquid. Here, we demonstrate the power of this method by predicting entropies, enthalpies, and melting points of 25 binary and ternary fluoride- and chloride-based molten salts using ab initio MD (AIMD) simulations. The remarkable agreement between our predictions and experimental data underscores the potential of this approach to transform computational thermodynamics, offering accurate, efficient, and direct predictions of thermodynamic properties across both solid and liquid phases.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.