通过主机- Mn4+相互作用的机器学习解码来破译控制Mn4+零声子线特性的关键因素

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jinxin Wang, , , Yuanyuan Dou, , , Jiahua Zhang, , , Mingyue Chen, , , Zhen Song*, , and , Quanlin Liu*, 
{"title":"通过主机- Mn4+相互作用的机器学习解码来破译控制Mn4+零声子线特性的关键因素","authors":"Jinxin Wang,&nbsp;, ,&nbsp;Yuanyuan Dou,&nbsp;, ,&nbsp;Jiahua Zhang,&nbsp;, ,&nbsp;Mingyue Chen,&nbsp;, ,&nbsp;Zhen Song*,&nbsp;, and ,&nbsp;Quanlin Liu*,&nbsp;","doi":"10.1021/acs.jpcc.5c05715","DOIUrl":null,"url":null,"abstract":"<p >Achieving wide color gamut in liquid crystal displays relies critically on narrow-band red-emitting phosphors. Mn<sup>4+</sup>-activated phosphors are promising candidates due to their sharp emission, yet modulating their zero-phonon line wavelengths remains challenging. This study employs machine learning to decode host–Mn<sup>4+</sup> interactions across 65 distinct hosts (42 fluorides, 6 fluoroxides, 17 oxides). By extracting 29 structural descriptors and leveraging a random forest regression model, we identify nine key features governing ZPL wavelengths. Electronegativity-related parameters dominate (77.83% cumulative importance), while geometric factors (bond angles, distances) also contribute significantly. The model achieves high accuracy (test MAE = 4.133 nm, <i>R</i><sup>2</sup> = 0.928), revealing that high electronegativity in secondary-coordination ions enhances Mn–ligand covalency, reducing the E<sub>g</sub> → <sup>4</sup>A<sub>2g</sub> transition energy and redshifting the emission peak wavelengths. This work identifies key design principles for Mn<sup>4+</sup>-activated fluoride, oxide, and oxyfluoride phosphors, enabling a targeted strategy for discovering next-generation narrow-band red emitters.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 41","pages":"18571–18577"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Key Factors Governing Mn4+ Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn4+ Interactions\",\"authors\":\"Jinxin Wang,&nbsp;, ,&nbsp;Yuanyuan Dou,&nbsp;, ,&nbsp;Jiahua Zhang,&nbsp;, ,&nbsp;Mingyue Chen,&nbsp;, ,&nbsp;Zhen Song*,&nbsp;, and ,&nbsp;Quanlin Liu*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c05715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving wide color gamut in liquid crystal displays relies critically on narrow-band red-emitting phosphors. Mn<sup>4+</sup>-activated phosphors are promising candidates due to their sharp emission, yet modulating their zero-phonon line wavelengths remains challenging. This study employs machine learning to decode host–Mn<sup>4+</sup> interactions across 65 distinct hosts (42 fluorides, 6 fluoroxides, 17 oxides). By extracting 29 structural descriptors and leveraging a random forest regression model, we identify nine key features governing ZPL wavelengths. Electronegativity-related parameters dominate (77.83% cumulative importance), while geometric factors (bond angles, distances) also contribute significantly. The model achieves high accuracy (test MAE = 4.133 nm, <i>R</i><sup>2</sup> = 0.928), revealing that high electronegativity in secondary-coordination ions enhances Mn–ligand covalency, reducing the E<sub>g</sub> → <sup>4</sup>A<sub>2g</sub> transition energy and redshifting the emission peak wavelengths. This work identifies key design principles for Mn<sup>4+</sup>-activated fluoride, oxide, and oxyfluoride phosphors, enabling a targeted strategy for discovering next-generation narrow-band red emitters.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 41\",\"pages\":\"18571–18577\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c05715\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c05715","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在液晶显示器中实现宽色域关键依赖于窄带红发荧光粉。Mn4+激活的荧光粉由于其尖锐的发射而成为有希望的候选者,但调制其零声子线波长仍然具有挑战性。本研究采用机器学习来解码65种不同宿主(42种氟化物,6种氟氧化物,17种氧化物)的宿主- mn4 +相互作用。通过提取29个结构描述符并利用随机森林回归模型,我们确定了控制ZPL波长的9个关键特征。电负性相关参数占主导地位(77.83%的累积重要性),而几何因素(键角,距离)也有显著贡献。模型精度较高(测试MAE = 4.133 nm, R2 = 0.928),表明二级配位离子的高电负性增强了mn -配体共价,降低了Eg→4A2g跃迁能,使发射峰波长红移。这项工作确定了Mn4+活化氟化物、氧化物和氧化氟化物荧光粉的关键设计原则,为发现下一代窄带红色发射器提供了有针对性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering the Key Factors Governing Mn4+ Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn4+ Interactions

Deciphering the Key Factors Governing Mn4+ Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn4+ Interactions

Deciphering the Key Factors Governing Mn4+ Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn4+ Interactions

Achieving wide color gamut in liquid crystal displays relies critically on narrow-band red-emitting phosphors. Mn4+-activated phosphors are promising candidates due to their sharp emission, yet modulating their zero-phonon line wavelengths remains challenging. This study employs machine learning to decode host–Mn4+ interactions across 65 distinct hosts (42 fluorides, 6 fluoroxides, 17 oxides). By extracting 29 structural descriptors and leveraging a random forest regression model, we identify nine key features governing ZPL wavelengths. Electronegativity-related parameters dominate (77.83% cumulative importance), while geometric factors (bond angles, distances) also contribute significantly. The model achieves high accuracy (test MAE = 4.133 nm, R2 = 0.928), revealing that high electronegativity in secondary-coordination ions enhances Mn–ligand covalency, reducing the Eg4A2g transition energy and redshifting the emission peak wavelengths. This work identifies key design principles for Mn4+-activated fluoride, oxide, and oxyfluoride phosphors, enabling a targeted strategy for discovering next-generation narrow-band red emitters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信