Olga Lucía Fernández, Ashton Trey Belew, Mariana Rosales-Chilama, Andrea Sánchez-Hidalgo, María Colmenares, Nancy Gore Saravia, Najib M El-Sayed
{"title":"人巨噬细胞反应与巴拿马乳杆菌对五价锑感染的自然抗性的相互作用。","authors":"Olga Lucía Fernández, Ashton Trey Belew, Mariana Rosales-Chilama, Andrea Sánchez-Hidalgo, María Colmenares, Nancy Gore Saravia, Najib M El-Sayed","doi":"10.1371/journal.pntd.0013600","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are the principal host cells of Leishmania spp. in human infection and play a critical role in controlling infection and enabling parasite survival and persistence. Nevertheless, understanding of drug resistance in leishmaniasis has primarily focused on the parasite. This investigation provides evidence of the significant differential macrophage response to ex vivo infection with clinical strains of L. (V.) panamensis naturally resistant (zymodeme 2.3/zym 2.3) or sensitive (zymodeme 2.2/zym 2.2) to antimonial drug, and the distinct effect of this drug on the activation of macrophages. Transcriptome analysis of infected monocyte-derived macrophages from healthy donors revealed significant interferon and cytokine signaling in response to zym 2.3 strains compared to zym 2.2 strains. Furthermore, in the presence of antimony, macrophages infected with zym 2.3 strains, but not with zym 2.2 strains, significantly increased the expression of genes associated with M-CSF-generated macrophages (M-MØ, anti-inflammatory). Notably, macrophages infected with zym 2.3 strains exhibited elevated expression of genes associated with control of inflammatory and microbicidal response, such as the IDO1/IL4I1-Kyn-AHR pathways and superoxide dismutase, and downregulation of transporters like ABC and AQP, compared to macrophages infected with zym 2.2 strains. Remarkably, the majority of these pathways remained upregulated even in the presence of the strong modulatory effect of antimonial drug. Together, these findings demonstrate that the initial and specific parasite-host interaction influences the ex vivo macrophage response to antimony. Identification of key pathways in macrophage responses associated with natural resistance to this antileishmanial, enhances understanding of host-response mechanisms in the outcome of Leishmania infection and response to treatment.</p>","PeriodicalId":49000,"journal":{"name":"PLoS Neglected Tropical Diseases","volume":"19 10","pages":"e0013600"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay of human macrophage response and natural resistance of infection by L. (V.) panamensis to pentavalent antimony.\",\"authors\":\"Olga Lucía Fernández, Ashton Trey Belew, Mariana Rosales-Chilama, Andrea Sánchez-Hidalgo, María Colmenares, Nancy Gore Saravia, Najib M El-Sayed\",\"doi\":\"10.1371/journal.pntd.0013600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are the principal host cells of Leishmania spp. in human infection and play a critical role in controlling infection and enabling parasite survival and persistence. Nevertheless, understanding of drug resistance in leishmaniasis has primarily focused on the parasite. This investigation provides evidence of the significant differential macrophage response to ex vivo infection with clinical strains of L. (V.) panamensis naturally resistant (zymodeme 2.3/zym 2.3) or sensitive (zymodeme 2.2/zym 2.2) to antimonial drug, and the distinct effect of this drug on the activation of macrophages. Transcriptome analysis of infected monocyte-derived macrophages from healthy donors revealed significant interferon and cytokine signaling in response to zym 2.3 strains compared to zym 2.2 strains. Furthermore, in the presence of antimony, macrophages infected with zym 2.3 strains, but not with zym 2.2 strains, significantly increased the expression of genes associated with M-CSF-generated macrophages (M-MØ, anti-inflammatory). Notably, macrophages infected with zym 2.3 strains exhibited elevated expression of genes associated with control of inflammatory and microbicidal response, such as the IDO1/IL4I1-Kyn-AHR pathways and superoxide dismutase, and downregulation of transporters like ABC and AQP, compared to macrophages infected with zym 2.2 strains. Remarkably, the majority of these pathways remained upregulated even in the presence of the strong modulatory effect of antimonial drug. Together, these findings demonstrate that the initial and specific parasite-host interaction influences the ex vivo macrophage response to antimony. Identification of key pathways in macrophage responses associated with natural resistance to this antileishmanial, enhances understanding of host-response mechanisms in the outcome of Leishmania infection and response to treatment.</p>\",\"PeriodicalId\":49000,\"journal\":{\"name\":\"PLoS Neglected Tropical Diseases\",\"volume\":\"19 10\",\"pages\":\"e0013600\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Neglected Tropical Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pntd.0013600\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Neglected Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pntd.0013600","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Interplay of human macrophage response and natural resistance of infection by L. (V.) panamensis to pentavalent antimony.
Macrophages are the principal host cells of Leishmania spp. in human infection and play a critical role in controlling infection and enabling parasite survival and persistence. Nevertheless, understanding of drug resistance in leishmaniasis has primarily focused on the parasite. This investigation provides evidence of the significant differential macrophage response to ex vivo infection with clinical strains of L. (V.) panamensis naturally resistant (zymodeme 2.3/zym 2.3) or sensitive (zymodeme 2.2/zym 2.2) to antimonial drug, and the distinct effect of this drug on the activation of macrophages. Transcriptome analysis of infected monocyte-derived macrophages from healthy donors revealed significant interferon and cytokine signaling in response to zym 2.3 strains compared to zym 2.2 strains. Furthermore, in the presence of antimony, macrophages infected with zym 2.3 strains, but not with zym 2.2 strains, significantly increased the expression of genes associated with M-CSF-generated macrophages (M-MØ, anti-inflammatory). Notably, macrophages infected with zym 2.3 strains exhibited elevated expression of genes associated with control of inflammatory and microbicidal response, such as the IDO1/IL4I1-Kyn-AHR pathways and superoxide dismutase, and downregulation of transporters like ABC and AQP, compared to macrophages infected with zym 2.2 strains. Remarkably, the majority of these pathways remained upregulated even in the presence of the strong modulatory effect of antimonial drug. Together, these findings demonstrate that the initial and specific parasite-host interaction influences the ex vivo macrophage response to antimony. Identification of key pathways in macrophage responses associated with natural resistance to this antileishmanial, enhances understanding of host-response mechanisms in the outcome of Leishmania infection and response to treatment.
期刊介绍:
PLOS Neglected Tropical Diseases publishes research devoted to the pathology, epidemiology, prevention, treatment and control of the neglected tropical diseases (NTDs), as well as relevant public policy.
The NTDs are defined as a group of poverty-promoting chronic infectious diseases, which primarily occur in rural areas and poor urban areas of low-income and middle-income countries. Their impact on child health and development, pregnancy, and worker productivity, as well as their stigmatizing features limit economic stability.
All aspects of these diseases are considered, including:
Pathogenesis
Clinical features
Pharmacology and treatment
Diagnosis
Epidemiology
Vector biology
Vaccinology and prevention
Demographic, ecological and social determinants
Public health and policy aspects (including cost-effectiveness analyses).