Arun Renganathan, Miguel A Minaya, Matthew Broder, Isabel Alfradique-Dunham, Rebecca L Miller, Dhruva D Dhavale, Michelle Moritz, Reshma Bhagat, Jacob Marsh, Anthony Verbeck, Grant Galasso, Emma Starr, David A Agard, Paul T Kotzbauer, Carlos Cruchaga, Celeste M Karch
{"title":"一个新的lncRNA FAM151B-DT调节聚集倾向蛋白的降解。","authors":"Arun Renganathan, Miguel A Minaya, Matthew Broder, Isabel Alfradique-Dunham, Rebecca L Miller, Dhruva D Dhavale, Michelle Moritz, Reshma Bhagat, Jacob Marsh, Anthony Verbeck, Grant Galasso, Emma Starr, David A Agard, Paul T Kotzbauer, Carlos Cruchaga, Celeste M Karch","doi":"10.1038/s41380-025-03277-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases share common features of protein aggregation along with other pleiotropic traits, including shifts in transcriptional patterns, neuroinflammation, disruption in synaptic signaling, mitochondrial dysfunction, oxidative stress, and impaired clearance mechanisms like autophagy. However, key regulators of these pleiotropic traits have yet to be identified. Here, we used transcriptomics, mass spectrometry, and biochemical assays to define the role of a novel lncRNA on tau pathophysiology. We discovered a long non-coding RNA (lncRNA), FAM151B-DT, that is reduced in a stem cell model of frontotemporal lobar dementia with tau inclusions (FTLD-tau) and in brains from FTLD-tau, progressive supranuclear palsy, Alzheimer's disease, and Parkinson's disease patients. We show that silencing FAM151B-DT in vitro is sufficient to enhance tau and α-synuclein aggregation. To begin to understand the mechanism by which FAM151B-DT mediates tau aggregation and contributes to several neurodegenerative diseases, we deeply characterized this novel lncRNA and found that FAM151B-DT resides in the cytoplasm where it interacts with tau, α-synuclein, HSC70, and other proteins involved in protein homeostasis. When silenced, FAM151B-DT blocks autophagy, leading to the accumulation of tau and α-synuclein. Importantly, we discovered that increasing FAM151B-DT expression is sufficient to promote autophagic clearance of phosphorylated tau and α-synuclein, and reduce tau and α-synuclein aggregation. Overall, these findings pave the way for further exploration of FAM151B-DT as a promising molecular target for several neurodegenerative diseases.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel lncRNA FAM151B-DT regulates degradation of aggregation prone proteins.\",\"authors\":\"Arun Renganathan, Miguel A Minaya, Matthew Broder, Isabel Alfradique-Dunham, Rebecca L Miller, Dhruva D Dhavale, Michelle Moritz, Reshma Bhagat, Jacob Marsh, Anthony Verbeck, Grant Galasso, Emma Starr, David A Agard, Paul T Kotzbauer, Carlos Cruchaga, Celeste M Karch\",\"doi\":\"10.1038/s41380-025-03277-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases share common features of protein aggregation along with other pleiotropic traits, including shifts in transcriptional patterns, neuroinflammation, disruption in synaptic signaling, mitochondrial dysfunction, oxidative stress, and impaired clearance mechanisms like autophagy. However, key regulators of these pleiotropic traits have yet to be identified. Here, we used transcriptomics, mass spectrometry, and biochemical assays to define the role of a novel lncRNA on tau pathophysiology. We discovered a long non-coding RNA (lncRNA), FAM151B-DT, that is reduced in a stem cell model of frontotemporal lobar dementia with tau inclusions (FTLD-tau) and in brains from FTLD-tau, progressive supranuclear palsy, Alzheimer's disease, and Parkinson's disease patients. We show that silencing FAM151B-DT in vitro is sufficient to enhance tau and α-synuclein aggregation. To begin to understand the mechanism by which FAM151B-DT mediates tau aggregation and contributes to several neurodegenerative diseases, we deeply characterized this novel lncRNA and found that FAM151B-DT resides in the cytoplasm where it interacts with tau, α-synuclein, HSC70, and other proteins involved in protein homeostasis. When silenced, FAM151B-DT blocks autophagy, leading to the accumulation of tau and α-synuclein. Importantly, we discovered that increasing FAM151B-DT expression is sufficient to promote autophagic clearance of phosphorylated tau and α-synuclein, and reduce tau and α-synuclein aggregation. Overall, these findings pave the way for further exploration of FAM151B-DT as a promising molecular target for several neurodegenerative diseases.</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-025-03277-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-03277-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A novel lncRNA FAM151B-DT regulates degradation of aggregation prone proteins.
Neurodegenerative diseases share common features of protein aggregation along with other pleiotropic traits, including shifts in transcriptional patterns, neuroinflammation, disruption in synaptic signaling, mitochondrial dysfunction, oxidative stress, and impaired clearance mechanisms like autophagy. However, key regulators of these pleiotropic traits have yet to be identified. Here, we used transcriptomics, mass spectrometry, and biochemical assays to define the role of a novel lncRNA on tau pathophysiology. We discovered a long non-coding RNA (lncRNA), FAM151B-DT, that is reduced in a stem cell model of frontotemporal lobar dementia with tau inclusions (FTLD-tau) and in brains from FTLD-tau, progressive supranuclear palsy, Alzheimer's disease, and Parkinson's disease patients. We show that silencing FAM151B-DT in vitro is sufficient to enhance tau and α-synuclein aggregation. To begin to understand the mechanism by which FAM151B-DT mediates tau aggregation and contributes to several neurodegenerative diseases, we deeply characterized this novel lncRNA and found that FAM151B-DT resides in the cytoplasm where it interacts with tau, α-synuclein, HSC70, and other proteins involved in protein homeostasis. When silenced, FAM151B-DT blocks autophagy, leading to the accumulation of tau and α-synuclein. Importantly, we discovered that increasing FAM151B-DT expression is sufficient to promote autophagic clearance of phosphorylated tau and α-synuclein, and reduce tau and α-synuclein aggregation. Overall, these findings pave the way for further exploration of FAM151B-DT as a promising molecular target for several neurodegenerative diseases.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.