Moiz Khan Sherwani, Matti O Ruuskanen, Dylan Feldner-Busztin, Panos Nisantzis Firbas, Gergely Boza, Ágnes Móréh, Tuomas Borman, Pande Putu Erawijantari, István Scheuring, Shyam Gopalakrishnan, Leo Lahti
{"title":"微生物组研究中的多组学时间序列分析:系统综述。","authors":"Moiz Khan Sherwani, Matti O Ruuskanen, Dylan Feldner-Busztin, Panos Nisantzis Firbas, Gergely Boza, Ágnes Móréh, Tuomas Borman, Pande Putu Erawijantari, István Scheuring, Shyam Gopalakrishnan, Leo Lahti","doi":"10.1093/bib/bbaf502","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in data generation have opened up unprecedented insights into living systems. It has been recognized that integrating and characterizing temporal variation simultaneously across multiple scales, from specific molecular interactions to entire ecosystems, is crucial for uncovering biological mechanisms and understanding the emergence of complex phenotypes. With the increasing number of studies incorporating multi-omics data sampled over time, it has become clear that integrated approaches are pivotal for these efforts. However, standard data analytical practices in longitudinal multi-omics are still shaping up and many of the available methods have not yet been widely evaluated and adopted. To address this gap, we performed the first systematic literature review that comprehensively categorizes, compares, and evaluates computational methods for longitudinal multi-omics integration, with a particular emphasis on four categories of the studies: (i) host and host-associated microbiome studies, (ii) microbiome-free host studies, (iii) host-free microbiome studies, and (iv) methodological framework studies. Our review highlights current methodological trends, identifies widely used and high-performing frameworks, and assesses each method across performance, interpretability, and ease of use. We further organize these methods into thematic groups-such as statistical modeling, machine learning, dimensionality reduction, and latent factor approaches-to provide a clear roadmap for future research and application. This work offers a critical foundation for advancing integrative longitudinal data science and supporting reproducible, scalable analysis in this rapidly evolving field.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics time-series analysis in microbiome research: a systematic review.\",\"authors\":\"Moiz Khan Sherwani, Matti O Ruuskanen, Dylan Feldner-Busztin, Panos Nisantzis Firbas, Gergely Boza, Ágnes Móréh, Tuomas Borman, Pande Putu Erawijantari, István Scheuring, Shyam Gopalakrishnan, Leo Lahti\",\"doi\":\"10.1093/bib/bbaf502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent developments in data generation have opened up unprecedented insights into living systems. It has been recognized that integrating and characterizing temporal variation simultaneously across multiple scales, from specific molecular interactions to entire ecosystems, is crucial for uncovering biological mechanisms and understanding the emergence of complex phenotypes. With the increasing number of studies incorporating multi-omics data sampled over time, it has become clear that integrated approaches are pivotal for these efforts. However, standard data analytical practices in longitudinal multi-omics are still shaping up and many of the available methods have not yet been widely evaluated and adopted. To address this gap, we performed the first systematic literature review that comprehensively categorizes, compares, and evaluates computational methods for longitudinal multi-omics integration, with a particular emphasis on four categories of the studies: (i) host and host-associated microbiome studies, (ii) microbiome-free host studies, (iii) host-free microbiome studies, and (iv) methodological framework studies. Our review highlights current methodological trends, identifies widely used and high-performing frameworks, and assesses each method across performance, interpretability, and ease of use. We further organize these methods into thematic groups-such as statistical modeling, machine learning, dimensionality reduction, and latent factor approaches-to provide a clear roadmap for future research and application. This work offers a critical foundation for advancing integrative longitudinal data science and supporting reproducible, scalable analysis in this rapidly evolving field.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf502\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multi-omics time-series analysis in microbiome research: a systematic review.
Recent developments in data generation have opened up unprecedented insights into living systems. It has been recognized that integrating and characterizing temporal variation simultaneously across multiple scales, from specific molecular interactions to entire ecosystems, is crucial for uncovering biological mechanisms and understanding the emergence of complex phenotypes. With the increasing number of studies incorporating multi-omics data sampled over time, it has become clear that integrated approaches are pivotal for these efforts. However, standard data analytical practices in longitudinal multi-omics are still shaping up and many of the available methods have not yet been widely evaluated and adopted. To address this gap, we performed the first systematic literature review that comprehensively categorizes, compares, and evaluates computational methods for longitudinal multi-omics integration, with a particular emphasis on four categories of the studies: (i) host and host-associated microbiome studies, (ii) microbiome-free host studies, (iii) host-free microbiome studies, and (iv) methodological framework studies. Our review highlights current methodological trends, identifies widely used and high-performing frameworks, and assesses each method across performance, interpretability, and ease of use. We further organize these methods into thematic groups-such as statistical modeling, machine learning, dimensionality reduction, and latent factor approaches-to provide a clear roadmap for future research and application. This work offers a critical foundation for advancing integrative longitudinal data science and supporting reproducible, scalable analysis in this rapidly evolving field.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.