通过交叉关注的外周血多模式整合用于癌症免疫谱分析。

IF 3.4 2区 医学 Q2 ONCOLOGY
Xiong Li, Yi Hua, Hongwei Liu, Juan Zhou, Yuejin Zhang, Haowen Chen
{"title":"通过交叉关注的外周血多模式整合用于癌症免疫谱分析。","authors":"Xiong Li, Yi Hua, Hongwei Liu, Juan Zhou, Yuejin Zhang, Haowen Chen","doi":"10.1186/s12885-025-14969-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accurate cancer risk prediction is hindered by complex, multi-layered immune interactions, and traditional tissue biopsies are invasive and lack scalability for large-scale or repeated assessments. Peripheral blood offers a minimally invasive and accessible alternative for immune profiling. This study aims to develop CAMFormer, a deep learning framework that integrates multimodal peripheral blood-derived immune features for precise, non-invasive early cancer risk prediction.</p><p><strong>Methods: </strong>CAMFormer combines mRNA expression, immune cell frequencies, and TCR diversity index, leveraging a cross-attention-based multimodal Transformer to capture cross-scale immune interactions.</p><p><strong>Results: </strong>In five-fold cross-validation, CAMFormer achieved an AUC of 0.92 and an F1-score of 0.85 on the validation set, outperforming unimodal and baseline methods.</p><p><strong>Conclusion: </strong>These results highlight the potential benefits of integrating multimodal immune features with cross-attention mechanisms for early cancer detection and for guiding future personalized immunotherapy studies.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"1523"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peripheral blood multimodal integration via cross-attention for cancer immune profiling.\",\"authors\":\"Xiong Li, Yi Hua, Hongwei Liu, Juan Zhou, Yuejin Zhang, Haowen Chen\",\"doi\":\"10.1186/s12885-025-14969-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Accurate cancer risk prediction is hindered by complex, multi-layered immune interactions, and traditional tissue biopsies are invasive and lack scalability for large-scale or repeated assessments. Peripheral blood offers a minimally invasive and accessible alternative for immune profiling. This study aims to develop CAMFormer, a deep learning framework that integrates multimodal peripheral blood-derived immune features for precise, non-invasive early cancer risk prediction.</p><p><strong>Methods: </strong>CAMFormer combines mRNA expression, immune cell frequencies, and TCR diversity index, leveraging a cross-attention-based multimodal Transformer to capture cross-scale immune interactions.</p><p><strong>Results: </strong>In five-fold cross-validation, CAMFormer achieved an AUC of 0.92 and an F1-score of 0.85 on the validation set, outperforming unimodal and baseline methods.</p><p><strong>Conclusion: </strong>These results highlight the potential benefits of integrating multimodal immune features with cross-attention mechanisms for early cancer detection and for guiding future personalized immunotherapy studies.</p>\",\"PeriodicalId\":9131,\"journal\":{\"name\":\"BMC Cancer\",\"volume\":\"25 1\",\"pages\":\"1523\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12885-025-14969-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-14969-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:复杂、多层次的免疫相互作用阻碍了准确的癌症风险预测,传统的组织活检具有侵入性,缺乏大规模或重复评估的可扩展性。外周血为免疫谱分析提供了一种微创和可获得的替代方法。该研究旨在开发CAMFormer,这是一种深度学习框架,集成了多模式外周血源性免疫特征,用于精确、非侵入性的早期癌症风险预测。方法:CAMFormer结合mRNA表达、免疫细胞频率和TCR多样性指数,利用基于交叉注意的多模态Transformer来捕获跨尺度免疫相互作用。结果:在五重交叉验证中,CAMFormer在验证集上的AUC为0.92,f1评分为0.85,优于单峰和基线方法。结论:这些结果突出了将多模态免疫特征与交叉注意机制结合起来用于早期癌症检测和指导未来个性化免疫治疗研究的潜在益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peripheral blood multimodal integration via cross-attention for cancer immune profiling.

Objective: Accurate cancer risk prediction is hindered by complex, multi-layered immune interactions, and traditional tissue biopsies are invasive and lack scalability for large-scale or repeated assessments. Peripheral blood offers a minimally invasive and accessible alternative for immune profiling. This study aims to develop CAMFormer, a deep learning framework that integrates multimodal peripheral blood-derived immune features for precise, non-invasive early cancer risk prediction.

Methods: CAMFormer combines mRNA expression, immune cell frequencies, and TCR diversity index, leveraging a cross-attention-based multimodal Transformer to capture cross-scale immune interactions.

Results: In five-fold cross-validation, CAMFormer achieved an AUC of 0.92 and an F1-score of 0.85 on the validation set, outperforming unimodal and baseline methods.

Conclusion: These results highlight the potential benefits of integrating multimodal immune features with cross-attention mechanisms for early cancer detection and for guiding future personalized immunotherapy studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信