Annette Zschiesche, Jeremy Carlier, Jörg Pietsch, Martin Scheu, Jasmin Seibt, Francesco P Busardò, Volker Auwärter, Laura M Huppertz
{"title":"含硅合成大麻素受体激动剂:探索ADMB-和Cumyl-3TMS-PrINACA在人类尿液标本和死后材料中的代谢途径,与体外和硅数据进行比较。","authors":"Annette Zschiesche, Jeremy Carlier, Jörg Pietsch, Martin Scheu, Jasmin Seibt, Francesco P Busardò, Volker Auwärter, Laura M Huppertz","doi":"10.1007/s00204-025-04204-y","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid emergence of synthetic cannabinoid receptor agonists (SCRAs) poses challenges for drug testing, particularly when analyzing urine samples due to the rapid metabolization of the parent compounds. In early 2023, two novel SCRAs were reported to the European Union Drugs Agency (EUDA): ADMB-3TMS-PrINACA and Cumyl-3TMS-PrINACA, which are both indazole SCRAs featuring a trimethylsilyl propyl moiety connected to the tertiary indazole nitrogen. Peaks corresponding to metabolites of ADMB-BINACA (also known as ADB-BUTINACA) and Cumyl-4CN-BINACA observed with retention time shifts in a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detecting SCRAs were later identified as metabolites of ADMB- and Cumyl-3TMS-PrINACA. Pooled human liver microsome (pHLMs, 25 µmol/L) and pooled human hepatocyte (PHH, 20 µmol/L) assays were performed to generate metabolites. Additionally, human urine samples were analyzed by reversed phase liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QToF-MS), assisted by GLORYx and BioTransformer 3.0 for in silico metabolite prediction. Gas chromatography-mass spectrometry (GC-MS) was used to identify substances in seized materials. In total, 34 metabolites for ADMB-3TMS-PrINACA and 38 for Cumyl-3TMS-PrINACA were tentatively identified. Major biotransformations included side chain monohydroxylation (specific markers) and TMS-group cleavage, likely initiated by oxidative Si-demethylation followed by further hydroxylation resulting in an N-3-OH-propyl metabolite and further oxidation to the respective N-propionic acid. Most of these biomarkers were detected in the blood, urine, and stomach content of a deceased poly-drug user exposed to ADMB-3TMS-PrINACA. Overall, Cumyl-3TMS-PrINACA was more prevalent than ADMB-3TMS-PrINACA in Germany according to routine urine testing. This work provides the first investigation of the metabolic fate and suggests biomarkers for these new SCRAs.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic cannabinoid receptor agonists containing silicon: exploring the metabolic pathways of ADMB- and Cumyl-3TMS-PrINACA in human urine specimens and post mortem material compared to in vitro and in silico data.\",\"authors\":\"Annette Zschiesche, Jeremy Carlier, Jörg Pietsch, Martin Scheu, Jasmin Seibt, Francesco P Busardò, Volker Auwärter, Laura M Huppertz\",\"doi\":\"10.1007/s00204-025-04204-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid emergence of synthetic cannabinoid receptor agonists (SCRAs) poses challenges for drug testing, particularly when analyzing urine samples due to the rapid metabolization of the parent compounds. In early 2023, two novel SCRAs were reported to the European Union Drugs Agency (EUDA): ADMB-3TMS-PrINACA and Cumyl-3TMS-PrINACA, which are both indazole SCRAs featuring a trimethylsilyl propyl moiety connected to the tertiary indazole nitrogen. Peaks corresponding to metabolites of ADMB-BINACA (also known as ADB-BUTINACA) and Cumyl-4CN-BINACA observed with retention time shifts in a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detecting SCRAs were later identified as metabolites of ADMB- and Cumyl-3TMS-PrINACA. Pooled human liver microsome (pHLMs, 25 µmol/L) and pooled human hepatocyte (PHH, 20 µmol/L) assays were performed to generate metabolites. Additionally, human urine samples were analyzed by reversed phase liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QToF-MS), assisted by GLORYx and BioTransformer 3.0 for in silico metabolite prediction. Gas chromatography-mass spectrometry (GC-MS) was used to identify substances in seized materials. In total, 34 metabolites for ADMB-3TMS-PrINACA and 38 for Cumyl-3TMS-PrINACA were tentatively identified. Major biotransformations included side chain monohydroxylation (specific markers) and TMS-group cleavage, likely initiated by oxidative Si-demethylation followed by further hydroxylation resulting in an N-3-OH-propyl metabolite and further oxidation to the respective N-propionic acid. Most of these biomarkers were detected in the blood, urine, and stomach content of a deceased poly-drug user exposed to ADMB-3TMS-PrINACA. Overall, Cumyl-3TMS-PrINACA was more prevalent than ADMB-3TMS-PrINACA in Germany according to routine urine testing. This work provides the first investigation of the metabolic fate and suggests biomarkers for these new SCRAs.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-025-04204-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04204-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Synthetic cannabinoid receptor agonists containing silicon: exploring the metabolic pathways of ADMB- and Cumyl-3TMS-PrINACA in human urine specimens and post mortem material compared to in vitro and in silico data.
The rapid emergence of synthetic cannabinoid receptor agonists (SCRAs) poses challenges for drug testing, particularly when analyzing urine samples due to the rapid metabolization of the parent compounds. In early 2023, two novel SCRAs were reported to the European Union Drugs Agency (EUDA): ADMB-3TMS-PrINACA and Cumyl-3TMS-PrINACA, which are both indazole SCRAs featuring a trimethylsilyl propyl moiety connected to the tertiary indazole nitrogen. Peaks corresponding to metabolites of ADMB-BINACA (also known as ADB-BUTINACA) and Cumyl-4CN-BINACA observed with retention time shifts in a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detecting SCRAs were later identified as metabolites of ADMB- and Cumyl-3TMS-PrINACA. Pooled human liver microsome (pHLMs, 25 µmol/L) and pooled human hepatocyte (PHH, 20 µmol/L) assays were performed to generate metabolites. Additionally, human urine samples were analyzed by reversed phase liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QToF-MS), assisted by GLORYx and BioTransformer 3.0 for in silico metabolite prediction. Gas chromatography-mass spectrometry (GC-MS) was used to identify substances in seized materials. In total, 34 metabolites for ADMB-3TMS-PrINACA and 38 for Cumyl-3TMS-PrINACA were tentatively identified. Major biotransformations included side chain monohydroxylation (specific markers) and TMS-group cleavage, likely initiated by oxidative Si-demethylation followed by further hydroxylation resulting in an N-3-OH-propyl metabolite and further oxidation to the respective N-propionic acid. Most of these biomarkers were detected in the blood, urine, and stomach content of a deceased poly-drug user exposed to ADMB-3TMS-PrINACA. Overall, Cumyl-3TMS-PrINACA was more prevalent than ADMB-3TMS-PrINACA in Germany according to routine urine testing. This work provides the first investigation of the metabolic fate and suggests biomarkers for these new SCRAs.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.