用机器学习预测水和有机溶解度:识别有机共溶剂的工作流程

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Maurycy Krzyżanowski, Sirazam Munira Aishee, Nirala Singh and Bryan R. Goldsmith
{"title":"用机器学习预测水和有机溶解度:识别有机共溶剂的工作流程","authors":"Maurycy Krzyżanowski, Sirazam Munira Aishee, Nirala Singh and Bryan R. Goldsmith","doi":"10.1039/D5DD00134J","DOIUrl":null,"url":null,"abstract":"<p >Developing predictive models of solubility is useful for accelerating solvent selection for applications ranging from electrochemical conversion of organics to pharmaceutical drug development. Herein, we report on the development of a machine learning (ML) workflow for identifying organic cosolvents to increase the concentration of hydrophobic molecules in aqueous mixtures. This task is of particular interest for the electrocatalytic conversion of biomass and bio-oils into sustainable fuels, which faces challenges due to the low aqueous solubility of the feedstock. First, we predict the miscibility of potential cosolvents in water, and we only consider cosolvents that are miscible. Second, we rank cosolvents based on the predicted solubility of the molecule of interest in them. To achieve this, we train two separate ML models: one using the AqSolDB dataset to predict aqueous solubility, and another using the BigSolDB dataset to predict solubility in organic solvents. We select the Light Gradient Boosting Machine (LGBM) model architecture for aqueous solubility (test <em>R</em><small><sup>2</sup></small> = 0.864, RMSE = 0.851 for log(S (mol<small><sup>−1</sup></small> dm<small><sup>−3</sup></small>))) and organic solubility (test <em>R</em><small><sup>2</sup></small> = 0.805, RMSE = 0.511 for log(<em>x</em>)) predictions based on comparing different ML models and features. We examine the generalizability of the organic solubility model on unseen solutes both quantitatively and qualitatively. We evaluate the utility of this ML workflow by identifying cosolvents for benzaldehyde and limonene—two hydrophobic molecules that are relevant for sustainable fuel production—and validate our predictions <em>via</em> experimental solubility measurements.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 3031-3042"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00134j?page=search","citationCount":"0","resultStr":"{\"title\":\"Predicting aqueous and organic solubilities with machine learning: a workflow for identifying organic cosolvents\",\"authors\":\"Maurycy Krzyżanowski, Sirazam Munira Aishee, Nirala Singh and Bryan R. Goldsmith\",\"doi\":\"10.1039/D5DD00134J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing predictive models of solubility is useful for accelerating solvent selection for applications ranging from electrochemical conversion of organics to pharmaceutical drug development. Herein, we report on the development of a machine learning (ML) workflow for identifying organic cosolvents to increase the concentration of hydrophobic molecules in aqueous mixtures. This task is of particular interest for the electrocatalytic conversion of biomass and bio-oils into sustainable fuels, which faces challenges due to the low aqueous solubility of the feedstock. First, we predict the miscibility of potential cosolvents in water, and we only consider cosolvents that are miscible. Second, we rank cosolvents based on the predicted solubility of the molecule of interest in them. To achieve this, we train two separate ML models: one using the AqSolDB dataset to predict aqueous solubility, and another using the BigSolDB dataset to predict solubility in organic solvents. We select the Light Gradient Boosting Machine (LGBM) model architecture for aqueous solubility (test <em>R</em><small><sup>2</sup></small> = 0.864, RMSE = 0.851 for log(S (mol<small><sup>−1</sup></small> dm<small><sup>−3</sup></small>))) and organic solubility (test <em>R</em><small><sup>2</sup></small> = 0.805, RMSE = 0.511 for log(<em>x</em>)) predictions based on comparing different ML models and features. We examine the generalizability of the organic solubility model on unseen solutes both quantitatively and qualitatively. We evaluate the utility of this ML workflow by identifying cosolvents for benzaldehyde and limonene—two hydrophobic molecules that are relevant for sustainable fuel production—and validate our predictions <em>via</em> experimental solubility measurements.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 10\",\"pages\":\" 3031-3042\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00134j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00134j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00134j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发溶解度的预测模型有助于加快从有机物的电化学转化到药物开发等应用的溶剂选择。在此,我们报告了一种机器学习(ML)工作流程的开发,用于识别有机共溶剂,以增加水性混合物中疏水分子的浓度。这项任务对生物质和生物油电催化转化为可持续燃料特别感兴趣,由于原料的水溶性低,该任务面临挑战。首先,我们预测潜在的共溶剂在水中的混溶性,我们只考虑可混溶的共溶剂。其次,我们根据感兴趣分子的预测溶解度对共溶剂进行排序。为了实现这一点,我们训练了两个独立的ML模型:一个使用AqSolDB数据集来预测水溶性,另一个使用BigSolDB数据集来预测有机溶剂中的溶解度。我们选择光梯度增强机(LGBM)模型架构进行水溶性(测试R2 = 0.864,对数(S (mol−1 dm−3))和有机溶解度(测试R2 = 0.805,对数(x) RMSE = 0.511)预测,基于比较不同的ML模型和特征。我们检验了有机溶解度模型在看不见的溶质上的定量和定性的普遍性。我们通过确定苯甲醛和柠檬烯(两种与可持续燃料生产相关的疏水分子)的共溶剂来评估该ML工作流程的实用性,并通过实验溶解度测量验证我们的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting aqueous and organic solubilities with machine learning: a workflow for identifying organic cosolvents

Predicting aqueous and organic solubilities with machine learning: a workflow for identifying organic cosolvents

Developing predictive models of solubility is useful for accelerating solvent selection for applications ranging from electrochemical conversion of organics to pharmaceutical drug development. Herein, we report on the development of a machine learning (ML) workflow for identifying organic cosolvents to increase the concentration of hydrophobic molecules in aqueous mixtures. This task is of particular interest for the electrocatalytic conversion of biomass and bio-oils into sustainable fuels, which faces challenges due to the low aqueous solubility of the feedstock. First, we predict the miscibility of potential cosolvents in water, and we only consider cosolvents that are miscible. Second, we rank cosolvents based on the predicted solubility of the molecule of interest in them. To achieve this, we train two separate ML models: one using the AqSolDB dataset to predict aqueous solubility, and another using the BigSolDB dataset to predict solubility in organic solvents. We select the Light Gradient Boosting Machine (LGBM) model architecture for aqueous solubility (test R2 = 0.864, RMSE = 0.851 for log(S (mol−1 dm−3))) and organic solubility (test R2 = 0.805, RMSE = 0.511 for log(x)) predictions based on comparing different ML models and features. We examine the generalizability of the organic solubility model on unseen solutes both quantitatively and qualitatively. We evaluate the utility of this ML workflow by identifying cosolvents for benzaldehyde and limonene—two hydrophobic molecules that are relevant for sustainable fuel production—and validate our predictions via experimental solubility measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信