基于Mel尺度谱参数的玉木语自动语音分割

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Eric Ramos-Aguilar;J. Arturo Olvera-Lopez;Ivan Olmos-Pineda;Ricardo Ramos-Aguilar
{"title":"基于Mel尺度谱参数的玉木语自动语音分割","authors":"Eric Ramos-Aguilar;J. Arturo Olvera-Lopez;Ivan Olmos-Pineda;Ricardo Ramos-Aguilar","doi":"10.1109/TLA.2025.11195167","DOIUrl":null,"url":null,"abstract":"The application of digital signal processing techniques and machine learning, along with implicit segmentation, poses a challenge in the study of phonetic segmentation of indigenous languages in Mexico, given their linguistic and phonetic diversity. The analysis of Mel-scaled spectrograms offers an effective approach to identify patterns that can outline relevant information. By comparing the results with the actual number of phonemes in a word, both successes and areas for improvement can be observed. This article proposes a methodology for automatic segmental analysis of the Yuhmu language, considering parameter search in the Mel scale and implementing the cosine distance between spectrogram vectors. Additionally, relevant data within the resulting matrices are taken into account based on four key thresholds in information selection. The analysis yields a Segment Error Rate (SER) ranging from 38.79% to 41.35%, which aligns with the results reported in the literature on the subject.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"23 11","pages":"950-959"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11195167","citationCount":"0","resultStr":"{\"title\":\"Automatic Phonetic Segmentation of the Yuhmu Language Using Mel Scale Spectral Parameters\",\"authors\":\"Eric Ramos-Aguilar;J. Arturo Olvera-Lopez;Ivan Olmos-Pineda;Ricardo Ramos-Aguilar\",\"doi\":\"10.1109/TLA.2025.11195167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of digital signal processing techniques and machine learning, along with implicit segmentation, poses a challenge in the study of phonetic segmentation of indigenous languages in Mexico, given their linguistic and phonetic diversity. The analysis of Mel-scaled spectrograms offers an effective approach to identify patterns that can outline relevant information. By comparing the results with the actual number of phonemes in a word, both successes and areas for improvement can be observed. This article proposes a methodology for automatic segmental analysis of the Yuhmu language, considering parameter search in the Mel scale and implementing the cosine distance between spectrogram vectors. Additionally, relevant data within the resulting matrices are taken into account based on four key thresholds in information selection. The analysis yields a Segment Error Rate (SER) ranging from 38.79% to 41.35%, which aligns with the results reported in the literature on the subject.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":\"23 11\",\"pages\":\"950-959\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11195167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11195167/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11195167/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

鉴于墨西哥土著语言的语言和语音多样性,数字信号处理技术和机器学习的应用以及隐式分词对其语音分词研究提出了挑战。mel尺度谱图的分析提供了一种有效的方法来识别可以概述相关信息的模式。通过将结果与单词的实际音素数量进行比较,可以观察到成功和需要改进的地方。本文提出了一种基于Mel尺度的参数搜索和谱图向量间余弦距离的玉木语自动分段分析方法。此外,根据信息选择中的四个关键阈值考虑结果矩阵中的相关数据。分析得出的片段错误率(SER)范围从38.79%到41.35%,这与有关该主题的文献报告的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Phonetic Segmentation of the Yuhmu Language Using Mel Scale Spectral Parameters
The application of digital signal processing techniques and machine learning, along with implicit segmentation, poses a challenge in the study of phonetic segmentation of indigenous languages in Mexico, given their linguistic and phonetic diversity. The analysis of Mel-scaled spectrograms offers an effective approach to identify patterns that can outline relevant information. By comparing the results with the actual number of phonemes in a word, both successes and areas for improvement can be observed. This article proposes a methodology for automatic segmental analysis of the Yuhmu language, considering parameter search in the Mel scale and implementing the cosine distance between spectrogram vectors. Additionally, relevant data within the resulting matrices are taken into account based on four key thresholds in information selection. The analysis yields a Segment Error Rate (SER) ranging from 38.79% to 41.35%, which aligns with the results reported in the literature on the subject.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信