一种用于视频目标检测的集成时空关系转换器

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wentao Zheng , Hong Zheng , Yuquan Sun , Ying Jing
{"title":"一种用于视频目标检测的集成时空关系转换器","authors":"Wentao Zheng ,&nbsp;Hong Zheng ,&nbsp;Yuquan Sun ,&nbsp;Ying Jing","doi":"10.1016/j.neucom.2025.131704","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, Transformer-based video object detection (VOD) methods have achieved remarkable progress by replacing the hand-crafted components traditionally used in CNN-based detectors. However, many existing approaches rely on staged spatio-temporal modeling strategies, which increase model complexity and restrict early interaction between spatial and temporal information. To overcome these limitations, we propose IntSTR, a novel framework for unified spatio-temporal modeling. At its core, the spatio-temporal relation encoder (STRE) integrates spatio-temporal feature processing within a single encoder through cascaded attention modules. To strengthen temporal consistency, the temporal query relation (TQR) module explicitly captures geometric relations between object queries across adjacent frames with minimal computational overhead. In addition, the Temporal Feature Memory (TFM) maintains a dynamic memory bank that caches temporal contexts, enabling effective feature aggregation and efficient online processing. Extensive experiments on the ImageNet VID dataset validate the effectiveness of our approach. IntSTR achieves an excellent trade-off between accuracy and efficiency, reaching a competitive 87.2 % <span><math><msub><mtext>mAP</mtext><mrow><mn>50</mn></mrow></msub></math></span> with the ResNet-101 backbone while maintaining real-time performance at 33.4 FPS.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131704"},"PeriodicalIF":6.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IntSTR: An integrated spatio-temporal relation transformer for video object detection\",\"authors\":\"Wentao Zheng ,&nbsp;Hong Zheng ,&nbsp;Yuquan Sun ,&nbsp;Ying Jing\",\"doi\":\"10.1016/j.neucom.2025.131704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, Transformer-based video object detection (VOD) methods have achieved remarkable progress by replacing the hand-crafted components traditionally used in CNN-based detectors. However, many existing approaches rely on staged spatio-temporal modeling strategies, which increase model complexity and restrict early interaction between spatial and temporal information. To overcome these limitations, we propose IntSTR, a novel framework for unified spatio-temporal modeling. At its core, the spatio-temporal relation encoder (STRE) integrates spatio-temporal feature processing within a single encoder through cascaded attention modules. To strengthen temporal consistency, the temporal query relation (TQR) module explicitly captures geometric relations between object queries across adjacent frames with minimal computational overhead. In addition, the Temporal Feature Memory (TFM) maintains a dynamic memory bank that caches temporal contexts, enabling effective feature aggregation and efficient online processing. Extensive experiments on the ImageNet VID dataset validate the effectiveness of our approach. IntSTR achieves an excellent trade-off between accuracy and efficiency, reaching a competitive 87.2 % <span><math><msub><mtext>mAP</mtext><mrow><mn>50</mn></mrow></msub></math></span> with the ResNet-101 backbone while maintaining real-time performance at 33.4 FPS.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131704\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225023768\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023768","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于变压器的视频目标检测(VOD)方法取代了传统的基于cnn的检测器中使用的手工制作组件,取得了显著的进展。然而,现有的许多方法依赖于分阶段的时空建模策略,这增加了模型的复杂性,限制了时空信息之间的早期交互。为了克服这些限制,我们提出了一种新的统一时空建模框架IntSTR。时空关系编码器(STRE)的核心是通过级联注意模块将时空特征处理集成到单个编码器中。为了加强时间一致性,时间查询关系(TQR)模块以最小的计算开销显式捕获跨相邻帧的对象查询之间的几何关系。此外,时间特征记忆(TFM)维护一个动态记忆库,缓存时间上下文,实现有效的特征聚合和高效的在线处理。在ImageNet VID数据集上的大量实验验证了我们方法的有效性。IntSTR在精度和效率之间取得了很好的平衡,在ResNet-101骨干网的情况下,达到了具有竞争力的87.2% mAP50,同时保持了33.4 FPS的实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IntSTR: An integrated spatio-temporal relation transformer for video object detection
In recent years, Transformer-based video object detection (VOD) methods have achieved remarkable progress by replacing the hand-crafted components traditionally used in CNN-based detectors. However, many existing approaches rely on staged spatio-temporal modeling strategies, which increase model complexity and restrict early interaction between spatial and temporal information. To overcome these limitations, we propose IntSTR, a novel framework for unified spatio-temporal modeling. At its core, the spatio-temporal relation encoder (STRE) integrates spatio-temporal feature processing within a single encoder through cascaded attention modules. To strengthen temporal consistency, the temporal query relation (TQR) module explicitly captures geometric relations between object queries across adjacent frames with minimal computational overhead. In addition, the Temporal Feature Memory (TFM) maintains a dynamic memory bank that caches temporal contexts, enabling effective feature aggregation and efficient online processing. Extensive experiments on the ImageNet VID dataset validate the effectiveness of our approach. IntSTR achieves an excellent trade-off between accuracy and efficiency, reaching a competitive 87.2 % mAP50 with the ResNet-101 backbone while maintaining real-time performance at 33.4 FPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信